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Abstract

In mammals, cadmium is widely considered as a non-genotoxic carcinogen acting through a methylation-dependent

epigenetic mechanism. Here, the effects of Cd treatment on the DNA methylation patten are examined together with
its effect on chromatin reconfiguration in Posidonia oceanica. DNA methylation level and pattern were analysed in

actively growing organs, under short- (6 h) and long- (2 d or 4 d) term and low (10 mM) and high (50 mM) doses of Cd,

through a Methylation-Sensitive Amplification Polymorphism technique and an immunocytological approach,

respectively. The expression of one member of the CHROMOMETHYLASE (CMT) family, a DNA methyltransferase,

was also assessed by qRT-PCR. Nuclear chromatin ultrastructure was investigated by transmission electron

microscopy. Cd treatment induced a DNA hypermethylation, as well as an up-regulation of CMT, indicating that de

novo methylation did indeed occur. Moreover, a high dose of Cd led to a progressive heterochromatinization of

interphase nuclei and apoptotic figures were also observed after long-term treatment. The data demonstrate that Cd
perturbs the DNA methylation status through the involvement of a specific methyltransferase. Such changes are

linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin.

Overall, the data show an epigenetic basis to the mechanism underlying Cd toxicity in plants.

Key words: 5-Methylcytosine-antibody, cadmium-stress condition, chromatin reconfiguration, CHROMOMETHYLASE,

DNA-methylation, Methylation- Sensitive Amplification Polymorphism (MSAP), Posidonia oceanica (L.) Delile.

Introduction

In the Mediterranean coastal ecosystem, the endemic

seagrass Posidonia oceanica (L.) Delile plays a relevant role

by ensuring primary production, water oxygenation and

provides niches for some animals, besides counteracting

coastal erosion through its widespread meadows (Ott, 1980;

Piazzi et al., 1999; Alcoverro et al., 2001). There is also

considerable evidence that P. oceanica plants are able to

absorb and accumulate metals from sediments (Sanchiz
et al., 1990; Pergent-Martini, 1998; Maserti et al., 2005) thus

influencing metal bioavailability in the marine ecosystem.

For this reason, this seagrass is widely considered to be

a metal bioindicator species (Maserti et al., 1988; Pergent

et al., 1995; Lafabrie et al., 2007). Cd is one of most

widespread heavy metals in both terrestrial and marine

environments.

Although not essential for plant growth, in terrestrial

plants, Cd is readily absorbed by roots and translocated into

aerial organs while, in acquatic plants, it is directly taken up

by leaves. In plants, Cd absorption induces complex changes

at the genetic, biochemical and physiological levels which

ultimately account for its toxicity (Valle and Ulmer, 1972;

Sanitz di Toppi and Gabrielli, 1999; Benavides et al., 2005;

Weber et al., 2006; Liu et al., 2008). The most obvious
symptom of Cd toxicity is a reduction in plant growth due to

an inhibition of photosynthesis, respiration, and nitrogen

metabolism, as well as a reduction in water and mineral

uptake (Ouzonidou et al., 1997; Perfus-Barbeoch et al., 2000;

Shukla et al., 2003; Sobkowiak and Deckert, 2003).

At the genetic level, in both animals and plants, Cd

can induce chromosomal aberrations, abnormalities in
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Abstract

The evolvement of duplicated gene loci in allopolyploid plants has become the subject of intensive studies. Most 
duplicated genes remain active in neoallopolyploids contributing either to a favourable effect of an extra gene dosage 
or to the build-up of positive inter-genomic interactions when genes or regulation factors on homoeologous chro-
mosomes are divergent. However, in a small number of loci (about 10%), genes of only one genome are active, while 
the homoeoalleles on the other genome(s) are either eliminated or partially or completely suppressed by genetic or 
epigenetic means. For several traits, the retention of controlling genes is not random, favouring one genome over the 
other(s). Such genomic asymmetry is manifested in allopolyploid wheat by the control of various morphological and 
agronomical traits, in the production of rRNA and storage proteins, and in interaction with pathogens. It is suggested 
that the process of cytological diploidization leading to exclusive intra-genomic meiotic pairing and, consequently, to 
complete avoidance of inter-genomic recombination, has two contrasting effects. Firstly, it provides a means for the 
fixation of positive heterotic inter-genomic interactions and also maintains genomic asymmetry resulting from loss 
or silencing of genes. The possible mechanisms and evolutionary advantages of genomic asymmetry are discussed.

Key words: Common (bread) wheat, cytological diploidization, durum wheat, genetic diploidization, intra-genomic (homologous) 
pairing, inter-genomic (homoeologous) pairing, Triticum aestivum, Triticum turgidum.

Introduction

Allopolyploidization is a biological process that has played 
a major role in plant speciation and evolution (Manton, 1950; 
Stebbins, 1950, 1971; Grant, 1971; Soltis and Soltis, 1993, 
1995; Soltis et al., 2009; Masterson, 1994: De Bodt et al., 2005; 
Tang et al., 2008), and has driven and shaped the evolution of 
vascular plants perhaps more than any other evolutionary pro-
cess (Feldman and Levy, 2005, 2009). It constitutes a radical 
and rapid mode of speciation that produces a new species by 
means of inter-specific or inter-generic hybridization followed 
by chromosome doubling. Allopolyploidization forms a hybrid 
species bearing two or more different genomes enveloped within 
one nucleus. As a result, the newly formed allopolyploid species, 
particularly annual and predominantly self-pollinating, faces 
several immediate challenges (Levy and Feldman, 2002, 2004; 

Feldman and Levy, 2005, 2009). It must secure an exclusive 
intra-genomic pairing at meiosis that will lead to full fertility 
and disomic inheritance, i.e. undergo cytological diploidization. 
In addition, it must orchestrate inter-genomic gene expression, 
namely, adapt to the new interaction between regulatory factors 
of the different genomes, and DNA replication. For example, it 
must deal with redundant and sometimes conflicting patterns of 
gene expression by eliminating duplicated genes or suppressing 
their expression via genetic or epigenetic means (genetic dip-
loidization). These challenges exert considerable genetic stress 
that triggers a variety of cardinal genetic and epigenetic changes, 
affecting genome structure and gene expression and resulting 
in cytological and genetic diploidization (Leitch and Bennett, 
1997; Feldman et al., 1997; Liu et al., 1998a, b; Comai, 2000; 
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Soltis and Soltis, 2000; Ozkan et al., 2001; Shaked et al., 2001; 
Pikaard, 2001; Levy and Feldman, 2002, 2004; Ma et al., 2004; 
Feldman and Levy, 2005, 2009; Ma and Gustafson, 2005, 2006; 
Eilam et al., 2008, 2010).

Cytological diploidization in allopolyploid wheat results from 
the elimination of DNA sequences from one genome in allotetra-
ploids and from two genomes in allohexaploids, augmenting the 
physical divergence between the homoeologous chromosomes 
(Feldman et al., 1997). These sequences, which thereby become 
homologous-specific sequences, may contribute to homology 
recognition and the initiation of meiotic pairing. This leads to 
exclusive pairing and recombination at meiosis between hom-
ologues rather than between homoeologues (Feldman et al., 
1997). In allopolyploid wheat, unlike the closely related Aegilops 
allopolyploids, cytological diploidization is also sustained by the 
Ph1 and Ph2 gene systems (Sears, 1976), ensuring that chromo-
some pairing is restricted to homologous chromosomes. The Ph 
gene systems evolved at the polyploid level and reinforce the 
cytological diploidization determined by the physical divergence 
between homoeologous chromosomes.

Genetic diploidization is a regulatory process that brings 
redundant or unbalanced gene systems in polyploids toward a 
diploid-like mode of expression (Ohno, 1970). It results either 
from elimination, mutation or repression of genes that, in many 
cases, restrict the activity of sets of genes to only one genome 
(Liu et al., 1998b; Wendel, 2000; Shaked et al., 2001; Levy and 
Feldman, 2002, 2004; Feldman and Levy 2005, 2009; Comai, 
2005; Chen, 2007). These genomic changes may affect the fit-
ness of the newly formed allopolyploid and increase its com-
petitiveness, leading to its successful establishment in nature. 
Hence, successful allopolyploidizations are those that success-
fully trigger an array of genomic changes that confer evolution-
ary advantages. If heightened fitness is not achieved rapidly 
enough, the nascent species will be out-competed by its parents 
and by other species.

Cytological diploidization-driven prevention of inter-genomic 
(homoeologous) pairing and meiotic recombination in allopol-
yploid wheat leads to full fertility and disomic inheritance. In 
other plant species, certain homoeologous recombination events 
can occur during and/or after diploidization of the evolving 
allopolyploid and contribute both to its further diploidization and 
adaptive radiation (Doyle et al., 2008; Gaeta and Pires, 2010; 
Wang and Paterson, 2011). However, there is little evidence that 
this occurs in allopolyploid wheat, seemingly due to the scarcity 
of homoeologous recombination (Sears, 1976).

Cytological diploidization enables and sustains the occur-
rence of two contrasting and complementary phenomena, both 
of which contribute to the evolutionary success of allopoly-
ploids: (i) build-up and maintenance of enduring and favourable 
inter-genomic genetic combinations, enabled by the absence 
of homoeologous pairing and recombination, and (ii) genomic 
asymmetry in the control of a variety of morphological, physi-
ological, and molecular traits, i.e. complete or predominant con-
trol of certain traits by one of the constituent genomes. While 
the first phenomenon was taken for granted by plant geneticists, 
genomic asymmetry was mainly ascribed to ribosomal RNA 
genes (reviewed in Pikaard, 2000), and has only recently been 
documented for other traits (Peng et al., 2003a, b; Fahima et al., 

2006; Rapp et al., 2009; Feldman and Levy, 2009; Flagel et al., 
2009; Flagel and Wendel, 2010; Gegas et al., 2010). In spite of 
the importance of this phenomenon, not much is known of its 
impact on the allopolyploid phenotype and its adaptive potential. 
This review describes and discusses various aspects of genomic 
asymmetry in the allopolyploid species of the wheat group (the 
genera Aegilops and Triticum), focusing on wild allotetraploid 
wheat, Triticum turgidum subsp. dicoccoides (wild emmer)—
the wild progenitor of domesticated tetraploid wheat, and on 
domesticated allopolyploid wheat. Mechanisms underlying the 
establishment and maintenance of genomic asymmetry in the 
allopolyploid species and the evolutionary advantages of this 
phenomenon are discussed.

Genomic asymmetry in the control of 
morphological traits in allopolyploid 
wheat species

On the basis of plant habitus, spike morphology, and cytogenetic 
data, Zohary and Feldman (1962) classified the allopolyploid 
species of the wheat group (the genera Triticum and Aegilops) 
into three natural clusters (Table 1). Genome analysis of the 
allopolyploids within each cluster showed that they share one 
unaltered genome (the pivotal genome) and a genome or genomes 
that is/are modified [the differential genome(s)]. Thus, all seven 
allopolyploids of the U-genome cluster share a genome homolo-
gous to that of diploid Aegilops umbellulata (Kihara, 1954), all 
the six allopolyploids of the D-genome cluster share a genome 
homologous to that of diploid Ae. tauschii (Kihara, 1954; Kihara 
et al., 1959), and all four allopolyploid species of the A-genome 

Table 1. The allopolyploid species clusters of the genera Aegilops 
and Triticum (after Zohary and Feldman, 1962)

Genome cluster Genome a

The U genome cluster

Ae. biuncialis UM
Ae. geniculata (=Ae. ovata) MU
Ae. neglecta (=Ae. triaristata 4x) UM
Ae. recta (=Ae. triaristata 6x) UMN
Ae. clumnaris UM
Ae. triuncialis UC
Ae. peregrina (=Ae. variabilis) SU
Ae. kotschyi SU
The D genome cluster

Ae. cylindrica DC
Ae. ventricosa DN
Ae. crassa 4x DM
Ae. crassa 6x DDM 
Ae. vavilovii DMS
Ae. juvenalis DMU
The A genome cluster

T. turgidum BBAA
T. timopheevii GGAA
T. aestivum BBAADD
T. zhukovski GGAAAmAm

a Genome designations according to Kimber and Tsunewaki (1988); 
underlined designation indicates a modified genome.
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cluster, including all the wild and domesticated forms, share a 
genome homologous to that of diploid Triticum urartu (Dvorak, 
1976; Chapman et al., 1976). The allopolyploids of each cluster 
resemble the diploid donor of the shared genome and differ in 
features of the differential genome(s) in their basic morphology 
(stature, leaf shape, and spike and spikelet morphology) and in 
the structure of the seed dispersal unit. The differential genomes 
modified through intra-clustering, and to a lesser extent, also 
via inter-cluster hybridizations (Zohary and Feldman, 1962; 
Feldman, 1965a, b, c), are primarily responsible for the eco-
geographical adaptation of the various allopolyploid species in 
each cluster.

Evidence accumulated over the last decade from molecular 
studies in allopolyploid wheat, indicates that genomic asym-
metry, i.e. biased expression toward only one parental genome 
(Flagel et al., 2009), is more prevalent in these species than pre-
viously thought. Korol and co-workers (Peng et al., 2003a, b) 
have already reported genomic asymmetry in wild allotetraploid 
wheat T. turgidum ssp. dicoccoides. The contribution of the 
A and B genomes to various traits in wild allotetraploid wheat 
are presented in Table 2. The A genome controls morphological 
traits including inflorescence structure, grain shape, free cary-
opsis, glumes with keels, plant habitus, and growth habit. This 
genome also controls the autogamy of allotetraploid wheat 
(assuming that the donor of the B genome is allogamous, i.e. Ae. 
speltoides) and harbours many domestication genes, such as the 
genes for non-brittle spike on 3AS (Rong, 1999; Nalam et al., 
2006), free-threshing on 5AL (Sears, 1954), QTLs for kernel size 
predominantly on A genome (1A, 2A, 3A, 4A, 7A, 5B, and 7B) 
(Elias et al., 1996), and a number of domestication-related QTLs 
(Peng et al., 2003a, b). The Q gene, encoding an Apetala2-like 
transcription factor, has been shown to have a critical effect on 
wheat domestication (Simons et al., 2006). The Q/q loci include 
orthologues and paralogues located on group 5. A recent study 
showed that a combination of mutations in Q genes contrib-
uted to the domestic spike phenotype, namely non-fragile, soft 
glumes and free threshing (Zhang et al., 2011). The mutation 
with the most significant phenotypic effect is an amino acid sub-
stitution in the protein coded by the 5A locus. Mutations, such as 

pseudogenization, namely, truncated open reading frame, of the 
locus on 5B or subfunctionalization, namely, partition between 
the role of this gene in different tissues or conditions, of the 
locus on 5D also contributed to the domestication phenotype, 
but to a lesser extent (Zhang et al., 2011). Remarkably, these 
mutations occurred after polyploidization (Zhang et al., 2011). 
Hence, the A genome tends to preserve a complete set of vital 
genes (Peng et al., 2003a, b), while the B genome regulates eco-
logical adaptation and tolerance to biotic and abiotic stresses 
(Peng et al., 2003a, b) and plays a leading role in population 
adaptation to environmental conditions (Fahima et al., 2006). 
Similar genomic asymmetry was found in a recent study of grain 
size and grain form traits in six mapping populations represent-
ing a wide range of primitive wheat species and modern elite 
varieties (Gegas et al., 2010). QTLs were identified in most of 
the homeologous groups, but those on chromosomes 1A, 3A, 4B, 
5A, and 6A had the largest and most consistent (across differ-
ent populations) effects on the studied traits. Sub-genome spe-
cialization in the control of various morphological and resistance 
traits was also found in other allopolyploids, including cotton 
(reviewed by Wendel and Cronn, 2003).

Molecular manifestation of genomic 
asymmetry in the allopolyploid wheat 
sub-genomes

Allotetraploid wheat was formed about 0.5 million years ago 
(Huang et al., 2002) and allohexaploid wheat about 10 000 years 
ago (Feldman et al., 1995). Such young allopolyploid species, 
originating presumably from a small number of inter-specific or 
inter-generic hybridizations, are expected to exhibit low pheno-
typic and molecular variation, due to the genetic bottleneck of 
the founder effect (Haudry et al., 2007). Yet, over the last sev-
eral decades, studies have shown that the allopolyploid wheat 
species harbour considerable genetic diversity whose levels dif-
fer between the two or three genomes of the allotetraploid and 
allohexaploid species, respectively. The B genome exhibits a 
higher marker polymorphism than the A genome in allohexa-
ploid wheat (Chao et al., 1989; Liu and Tsunewaki, 1991; Devos 
et al., 1992; Siedler et al., 1994), in wild and domesticated 
allotetraploid wheat (Liu and Tsunewaki, 1991; Huang et al., 
1999; Rong et al., 1999; Li et al., 2000), as well as between 
wild and domesticated allotetraploid wheats (Peng et al., 2000; 
Peleg et al., 2008). Such differences were most pronounced for 
loci revealed by gDNA rather than cDNA probes (Huang et al., 
1999; Rong et al., 1999). Similarly, higher polymorphism in 
the B compared with the A genome were seen in microsatellites 
(Röder et al., 1998; Li et al., 2000). B-genome chromosomes are 
characterized by more c-banding than chromosomes of A and D 
genomes (Gill, 1987) and therefore, a higher quantity of repeti-
tive DNA sequences. Similarly, more retrotransposons and vari-
ations within them have been observed in the B genome, when 
compared with the A and D genomes (K Kashkush, personal 
communication).

Shaked et al. (2001) reported immediate sequence loss in the F1 
and in the newly formed allotetraploids Aegilops longissima–Ae. 
umbellulata and Ae. sharonensis–Triticum monococcum, mainly 

Table 2. Genome asymmetry in the control of various traits in the 
wild allotetraploid wheat, T. turgidum subsp. dicoccoides (genome 
BBAA) 

Traits under the control of 
Genome A

Traits under the control of  
Genome B

Inflorescence morphology Regulation of ecological adaptation
Free caryopsis Double the number of disease-resistance 

genes
Glumes with keels Contains more stress-related genes?
The shape of the edge of the 
glumes (beaked glumes)

Higher polymorphism of molecular 
markers

Hairs at the base of every 
spikeket

Higher polymorphism of HMW glutenin 
genes

Plant habitus Larger amount of repetitive sequences
Growth habit Activity on nucleolar organizers
Autogamy Larger number of rRNA genes
Many domestication genes
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affecting one of the parental genomes. A high level of sequence 
elimination occurring immediately after hybridization or after 
chromosome doubling, was registered in Triticale (wheat–rye 
allopolyploid). Interestingly, the rye parental genome of Triticale 
underwent more changes than that of the wheat genome, with 
cytoplasmic–nuclear interaction playing a key role in the direc-
tion, amount, timing, and rate of sequence changes (reviewed by 
Ma and Gustafson, 2008). Similarly, the B genome in Brassica 
juncea and B. napus showed fewer changes than the A or C 
genomes in the allotetraploid background (Liu and Wang 2006).

In addition to sequence elimination, Shaked et al. (2001) 
reported alterations in cytosine methylation in 13% of the loci 
of the allotetraploid Aegilops sharonensis–Triticun monococ-
cum, affecting both repetitive DNA sequences and low-copy 
DNA in approximately equal proportions. Cytosine methylation 
was also asymmetric; twice as many sequences were affected in 
T. monococcum, when compared with those of Ae. sharonensis.

Genome-wide transcriptome analyses in synthetic Arabidopsis 
allotetraploids showed that expression patterns from one genome 
could be dominant over the other genome (Wang et al. 2006a, 
b). Pumphery et al. (2009) found that approximately 16% of the 
825 genes analysed displayed non-additive expression in the first 
generation of synthetic hexaploid wheat: 2.9% showed overdom-
inance while the remaining 13.1% were similar to one of the par-
ents. Similarly, Chague et al. (2010) analysed 55 052 transcripts 
in two lines of synthetic allohexaploid wheat and found that 7% 
of the genes displayed non-additive expression, approximately 
half of which showed asymmetry. Further compounding evi-
dence was provided by Akhunova et al. (2010), who measured 
homoeologue-specific expression in synthetic allohexaploid 
wheat. They found that about 19% of the studied genes showed 
homoeologue-specific non-additive up- or down-regulation of 
expression. In Tragopogon miscellus (Asteraceae), a non-crop 
young (40 generations-old) allotetraploid plant species, fre-
quent tissue- and sub-genome-specific silencing (partition) in 
natural allopolyploids was noted among the 144 genes ana-
lysed, globally activated by hybridization (Buggs et al., 2011). 
Comparison with the parental diploids led the authors to con-
clude that tissue-specific silencing of one of the homoeoalleles 
occurs within the first 40 generations of allopolyploidy of many 
genes. Coate and Doyle (2010) compared natural allopolyploid 
Glycine dolichocarpa and its diploid progenitors and found that 
the number of genes expressed in the leaves (the size of leaf tran-
scriptome) of the allopolyploid was only 70% of the sum of the 
progenitor transcriptomes, while the reduction in the genome 
size was much smaller (allopolyploid genome size was 94.3% 
of the sum of the progenitor genomes). Thus, ‘transcriptome 
downsizing’ is greater than genome downsizing. Their analysis 
of a few thousand genes showed massive partial dosage compen-
sation. But, in 11.5% of the examined accompanied pairs, one 
of two copies was silent; in cases of complete silencing strong 
up-regulation of the homoelogous gene was found.

In a survey-sequencing study recently conducted by Wicker 
et al. (2011), 6–10 000 gene sequences were sampled per chro-
mosome, in all six arms of the group 1 chromosomes of hexa-
ploid wheat. These gene sequences were compared with their 
closest homologues in the Triticeae group 1 syntenic region in the 
Brachypodium, rice, and sorghum model genomes. Although the 

number of syntenic genes was similar between the homoeologous 
chromosomes, the number of non-syntenic genes was found to 
be highly diverse between wheat subgenomes. For example, the 
long arms of wheat group 1 chromosomes contain between 577 
(1DL) and 1035 (1BL) gene homologues that are specific to their 
respective chromosome arm only. Interestingly, deviations from 
synteny on the short arms of group 1 were more extreme. The 
most extreme events were reported along the wheat 1BS chromo-
some arm, where 2251 putative non-syntenic genes were identi-
fied, more than five times the number of syntenic genes (Wicker 
et al., 2011). These findings suggest that genomic regions are dif-
ferentially affected by this homoeologue diversification—a phe-
nomenon that may enable the establishment of asymmetry. Many 
of these non-syntenic genes represent pseudogenes that arose 
from transposable element (TE) activity and double-strand break 
repair (Wicker et al., 2011). Wicker et al. (2011) propose that this 
accumulation of genic sequences is driven by TE activity, and 
that these findings indicate that homoeologous wheat chromo-
somes can exhibit different evolutionary dynamics. The authors 
conclude that it is still unclear if this process has contributed to 
functional diversity or to the evolution of agriculturally impor-
tant genes or if it mostly represents genomic noise. However, the 
accumulated data reviewed in the current report supports that 
such evolutionary dynamics may have contributed to genomic 
asymmetry in allopolyploid wheat.

Shitsukawa et al. (2007) reported both genetic and epigenetic 
alterations in the homoeologues of a wheat class E MADS-box 
gene. Two class E genes are identified in wheat, WSEP (wheat 
SEPALLATA) and WLHS1 (wheat Leafy Hull Sterile 1). The three 
wheat homoeologues of WSEP showed similar genomic struc-
tures and expression profiles. By contrast, the three homoeo-
logues of WLHS1 showed genetic and epigenetic alterations. 
The A genome WLHS1 homoeologue (WLHS1-A) had a struc-
tural alteration that contained a large novel sequence in place of 
the K domain sequence. Both a yeast two-hybrid analysis and 
a transgenic experiment indicated that the WLHS1-A protein 
had no apparent function. The B and D genome homoeologues, 
WLHS1-B and WLHS1-D, respectively, had an intact MADS-box 
gene structure, but WLHS1-B was predominantly silenced by 
cytosine methylation. Consequently, of the three WLHS1 homoe-
ologues, only WLHS1-D functions in hexaploid wheat. This rep-
resents a situation where three homoeologues are differentially 
regulated by genetic and epigenetic mechanisms.

Genomic asymmetry in nucleolar formation 
and ribosomal RNA gene activity

Nucleolar dominance, i.e. inter-genomic suppression of the for-
mation of a nucleolus or nucleoli of one species by the presence 
of nucleolar organizer(s) of another species, is characteristic of 
many inter-specific and inter-generic plant hybrids (Navashin, 
1928, 1934; Pikaard, 2000) and is a general phenomenon in the 
allopolyploid species of the genera Aegilops and Triticum.

The diploid species of wheat T. monococcum and T. urartu 
contain two nucleolar organizer regions (NORs), one on chro-
mosome arm 1AS and the second on 5AS (Gerlach et al., 1980; 
Miller et al., 1983). In the allopolyploid wheat species, the NOR 
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of 1AS is inactive, while that of 5AS was lost (Miller et al., 
1983; Jiang and Gill, 1994). Thus, allohexaploid wheat 
(genome BBAADD) possesses four pairs of NORs on the 
short arm of chromosomes 1A, 1B, 6B, and 5D (Crosby, 1957; 
Crosby-Longwell and Svihla, 1960; Bhowal, 1972; Darvey 
and Driscoll, 1972). In this species, the nucleolar organizers of 
the B genome suppress the nucleolar organizers of the A and 
D genomes (Crosby, 1957; Crosby-Longwell and Svihla, 1960; 
Darvey and Driscoll, 1972; Flavell and O’Dell, 1979). Similarly, 
the nucleolar organizers of the B genome suppress those of the 
A genome in allotetraploid wheat, T. turgidum (genome BBAA) 
(Frankel et al., 1987) and those of the R genome in 6x and 8x 
triticale (genome BBAARR and BBAADDRR, respectively) 
(Darvey and Driscoll, 1972; Cermeño et al., 1984a; Martini and 
Flavell, 1985; Appels et al., 1986).

Nucleolar dominance was observed in all allopolyploid spe-
cies of Aegilops (Cermeño and Lacadena, 1984; Cermeño et al., 
1984b). In these species, the U genome from Aegilops u mbellulata 
completely suppresses the NOR activity of the M genome of 
Ae. geniculata, the S genome of Ae. peregrina, the D genome of 
Ae. juvenalis, and the C genome of Ae. triuncialis and that of one 
pair of the nucleolar organizer chromosomes of the M genome 
of Ae. columnaris, Ae. biuncialis, Ae. juvenalis, Ae. recta. The 
nucleolar activity of the D genome is completely suppressed by 
the U genome in Ae. juvenalis, the C genome in Ae. cylindrica, 
and the M genome in Ae. ventricosa (Cermeño et al., 1984b). The 
nucleolar organizers of the U genome also suppress the activity 
of those of the rye R genome in hybrids between allopolyploid 
species of the U genome-bearing Aegilops and Secale cereale or 
S. vavilovii (Cermeño and Lacadena, 1985).

Every genome possesses one or more NORs that contain clus-
ters of the 45S ribosomal RNA (rRNA)-encoding genes that are 
active inside the nucleolus; the extent of their activity is propor-
tional to the size of the nucleolus (Birnstiel et al., 1971; Appels 
et al., 1980). Consequently, nucleolus formation is considered 
evidence for rRNA gene expression and the lack thereof, indi-
cates the absence of rRNA gene transcription (Flavell et al., 
1986). Moreover, the relative size of nucleoli within the same 
nucleus has been taken as a measure of the differential activity 
between one NOR and another (Flavell et al., 1986).

The number of rRNA-encoding genes in each of the four 
NOR sites of allohexaploid wheat was determined by Flavell and 
coworkers. In the standard laboratory Chinese Spring cultivar, 
chromosomes 1A and 5D contain a very small proportion of the 
rRNA-encoding genes (10%), while chromosomes 1B and 6B 
possess 30% and 60% of these genes, respectively (2700 and 
5500 copies, respectively) (Mohan and Flavell, 1974; Flavell 
and O’Dell, 1976). Similar patterns were found for allotetraploid 
wheat (Frankel et al., 1987). Chromosomes 1A and 5D produced 
very small nucleoli or none at all in the Chinese Spring variety 
(Crosby, 1957; Crosby-Longwell and Svihla, 1960). These find-
ings stand in line with chromosomes 1A and 5D having a small 
proportion of the total rRNA gene complement.

Nucleolar dominance in the allopolyploid species of the wheat 
group is achieved either by elimination of rRNA-encoding 
genes, as is the case of 5AS, or by suppression of their activity. 
Gustafson and Flavell (1996) and Houchins et al. (1997) found 
that inactivation of the rRNA-encoding genes is associated with 

increased cytosine methylation at their CCGG sites. Similarly, 
Chen and Pikaard (1997) found that the silenced rRNA-encoding 
genes in Brassica allotetraploids are maintained by DNA meth-
ylation and histone deacetlyation. Further evidence suggesting 
that nucleolar suppression is triggered by cytosine methylation 
came from the fact that the suppression of the NORs of genome 
R was reversed in wheat×rye hybrids and triticale (a synthetic 
allopolyploid between tetraploid wheat and rye, Secale cereale) 
by treatment with the demethylating agent 5-aza-cytosine (Vieira 
et al., 1990; Neves et al., 1995; Amado et al., 1997).

Newly synthesized allopolyploids exhibit genetic and epige-
netic changes in their rRNA-encoding genes similar to those 
occurring in natural allopolyploids, indicating that these changes 
are generated during allopolyploid formation (Baum and 
Feldman, 2010). Shcherban et al. (2008b) detected rapid elimi-
nation of the Aegilops sharonensis rRNA-encoding genes in the 
synthetic allopolyploid Aegilops sharonensis–Ae. umbellulata, 
which stands in agreement with the pattern in the natural allopol-
yploid having the same genomic combination, i.e. Ae. peregrina 
and Ae. kotschyi. Similarly, Brettell et al. (1986) reported that, in 
hybrids between wheat and rye, the rRNA-encoding genes from 
one of the rye chromosomal sites were deleted immediately after 
hybridization. Silencing of rRNA-encoding genes has also been 
found to be a rapid response of Brassicaceae genomes to allopol-
yploidization (Chen and Pikaard, 1997).

Wheat 5S DNA also undergoes immediate changes in 
response to allopolyploidization, followed by the elimination of 
unit classes of 5S DNA (Baum and Feldman, 2010). This elimi-
nation was reproducible, i.e. the same unit classes were elimi-
nated in natural and synthetic allopolyploids having the same 
genomic combinations, indicating that no further elimination 
occurred in the unit classes of the 5S DNA during the life of the 
allopolyploids.

Genomic asymmetry in the control of 
storage proteins in allopolyploid wheat

Genetic control of high molecular weight (HMW) glutenin subu-
nits, important components of wheat seed-storage proteins, was 
studied in allohexaploid wheat (Brown et al., 1979; Payne et al., 
1981, 1982; Galili and Feldman, 1983a) and in domesticated 
and wild allotetraploid wheat (Galili and Feldman, 1983b; Nevo 
and Payne, 1987; Levy and Feldman, 1988; Levy et al., 1988; 
Felsenburg et al., 1991). These subunits, constituting about 10% 
of total wheat-endosperm proteins, are resolved in sodium dode-
cyl sulphate (SDS) and are easily discernible in polyacrylamide 
gel electrophoresis (PAGE). The HMW glutenin subunits are 
encoded by the Glu-A1 and Glu-B1 gene clusters in allotetraploid 
wheat, and by the Glu-A1, Glu-B1, and Glu-D1 gene clusters 
in allohexaploid wheat (Payne et al., 1982; Galili and Feldman, 
1983a), located on the long arm of homoeologous-group-1 chro-
mosomes (Payne et al., 1982; Galili and Feldman 1983a, and 
reference therein). In allohexaploid wheat, each of these gene 
clusters is composed of two multi-allelic gene loci: Glu-A1-1 and 
Glu-A1-2 on chromosome 1A, Glu-B1-1 and Glu-B1-2 on chro-
mosome 1B, and Glu-D1-1 and Glu-D1-2 on chromosome 1D. 
The products of Glu-A1-1, Glu B1-1, and Glu-D1-1 comprise the 
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slow migrating subunits (x) while those of Glu-A1-2, Glu-B1-2, 
and Glu-D1-2 comprise the fast-migrating subunits (y).

Most lines of allohexaploid wheat have two HMW glu-
tenin subunits controlled by chromosome 1B, two bands con-
trolled by 1D and 0–2 bands controlled by 1A (Lawrence and 
Shepherd, 1981; Payne et al., 1984a, b; Galili and Feldman, 
1983b). Galili and Feldman (1983b) analysed 109 different lines 
of allohexaploid wheat, representing a wide spectrum of genetic 
backgrounds, and found that 22 lines (20.2%) had no HMW glu-
tenin subunits controlled by chromosome 1A, 44 lines (40.4%) 
had only one such band and 43 lines (39.4%) had two bands. 
Moreover, in all lines having one subunit controlled by 1A, only 
the slow migrating subunit, the x subunit, was involved, i.e. only 
Glu-1A-1 was active. Hence, in 60% of the studied hexaploid 
lines, Glu-A1-2 was inactive, although this gene is regularly 
active in diploid wheat (Waines and Payne, 1987).

Levy et al. (1988) studied the HMW glutenin subunits in 456 
accessions of the wild allotetraploid wheat Triticum turgidum 
subsp. dicoccoides, originating from 21 different populations in 
Israel. In 82% of the accessions, the fast-migrating subunit of the 
A genome, the y subunit, was absent, and in 17% of the acces-
sions, the slow-migrating subunit of this genome, the x subunit, 
was also absent. Namely, only the Glu-B1 genes of the B genome 
were active. The fast-migrating subunit of the A genome was 
absent in all of the 11 studied lines of the primitive domesticated 
allotetraploid wheat, T. turgidum subsp. dicoccum, i.e. Glu-A1-2 
was inactive. Glu-A1-1 was also inactive, while only Glu-B1-1 
and Glu-B1-2 were active in all of the 19 evaluated lines of mod-
ern allotetraploid wheat, T. turgidum subsp. durum (Feldman 
et al., 1986). Moreover, the HMW glutenin loci of the B genome 
were much more polymorphic than those of the A genome 
(Felsenburg et al., 1991). The reduced polymorphism of the 
A genome loci were suggested to reflect the non-random inac-
tivation of HMW glutenin genes mainly affecting the A genome 
genes in allopolyploid wheat (Galili and Feldman, 1983b; Levy 
et al., 1988).

Thus, in both allotetraploid and allohexaploid wheat, inactiva-
tion of HMW glutenin genes is massive and non-random and 
occurs in the Glu genes of the A genome (Galili and Feldman, 
1983a, b; Feldman et al., 1986; Levy et al., 1988, and refer-
ence therein). This tendency has also been found in hexaploid 
wheat for HMW gliadin genes (Galili and Feldman 1983a, b). 
The order of inactivation was also non-random, starting with 
the rapidly migrating subunits and continuing with the slowly 
migrating ones.

Evidence showing that the Glu-A1-2 gene exists in the 
Chinese Spring cultivar of allohexaploid wheat, that lacks 
the fast-migrating HMW glutenin band coded by this gene 
(Thompson et al., 1983), supports the assumption of inactivation 
rather than elimination of this gene. This is in accord with the 
finding that the inactivation of Glu-A1-2 in allohexaploid wheat 
is caused by the presence of a terminating sequence inside the 
transcribed portion of the gene (Forde et al., 1985).

Galili and Feldman (1984) showed that inactivation 
of endosperm-protein genes is also brought about by an 
inter-genomic suppression. Extracted allotetraploid wheat, 
lacking the D-genome and possessing the A and B genomes 
of its allohexaploid progenitor (Kerber, 1964), facilitates the 

study of inter-genomic relationships between genes of the D 
genome and those of the other two genomes. SDS-PAGE anal-
ysis of such extracted tetraploid lines exhibited several bands 
with increased staining intensity, as well as some new bands. 
The latter seemed to result from novel activity of genes located 
on the A or B genomes, as the repression exerted by the D 
genome was removed. Addition of the D genome resumed the 
suppression of these genes. Galili and Feldman (1984) sug-
gested that these endosperm-protein genes were repressed 
immediately following the formation of allohexaploid wheat, 
about 10 000 years ago, but have retained their potential for 
activity. Likewise, microarray analyses have pointed to a group 
of genes, located on chromosomes of the A and B genomes, 
that are strictly regulated by the presence of the D genome; 
they are not expressed in allohexaploid wheat, expressed in 
an extracted allotetraploid (genome BBAA), and are silenced 
again upon supplementation the D genome to the extracted 
tetraploid plants (B Liu, personal communication). Similarly, 
Kerber and Green (1980) described an inter-genomic suppres-
sion of a rust resistance gene, located in the D-genome, by 
gene(s) of the A or B genomes.

Genomic asymmetry in the control 
of agronomic traits in domesticated 
allopolyploid wheat

Wheat genome-driven control of various agronomic traits and 
of disease and pest resistance in domesticated allopolyploid 
is categorized in Tables 3 and 4, respectively. The B and D 
genomes control the most important genes associated with 
reduced plant height (Rht) and gibberelic acid insensitivity 
(Ga), yielding dwarf and semi-dwarf wheat, the main types of 
modern wheat varieties. Dwarf and semi-dwarf wheat varie-
ties are characterized by an improved harvest index and, con-
sequently, are high-yielding varieties. These varieties have 
replaced the traditional tall, low-yield varieties in many parts 
of the world during the ‘green revolution’ and thus, increased 
global wheat production.

The B and D genomes control grain protein content (Law 
et al., 1978; Joppa and Cantrell, 1990) and grain hardness (Morris 
et al., 1999; Chantret et al., 2005). These genomes also control 
wax production (Tsunewaki and Ebona, 1999), an important trait 
that affects drought tolerance. The B and D genomes are respon-
sible for tolerance to abiotic stresses. The B genome contains 
genes associated with boron tolerance (Paull et al., 1991), low 
cadmium uptake (Penner et al., 1995), and tolerance to iron defi-
ciency (Maystrenko, 1992), while the D genome contains gene(s) 
conferring aluminium tolerance (Riede and Anderson, 1996) and 
response to salinity (Dubcovsky et al., 1996). Most genes for her-
bicide resistance are located in the B genome (Snape et al., 1987), 
and those responsive to photoperiod and most of those responsive 
to vernalization are located on the B and D genomes (Table 3). 
The A genome controls plant and spike morphology and the main 
traits of the ‘domestication syndrome’, e.g. non-brittle rachis 
(Nalam et al., 2006) and free threshing (Sears, 1954).

The B genome harbours double the number of 
disease-resistance genes and resistance-gene analogue (RGA) 
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loci than the A and D genomes (Peng et al., 2003b; Fahima et al., 
2006). It is noteworthy that upon screening the GrainGenes web 
site (http://wheat.pw.usda.gov/), we found that of 184 mapped 
wheat disease resistance genes, 88 were in the B genome, dem-
onstrating significant (P <0.008) deviation from equal distribu-
tion among the three genomes (Table 4). Most genes conferring 
resistance to stem rust, stripe rust, and leaf rust, the most com-
mon wheat diseases that cause significant global yield loss each 
year, are located in the B genome.

In the context of our genome asymmetry concept, it is interest-
ing to note that the predominant location of R-gene clusters and 
clusters of R-gene analogues in the B genome of wheat coin-
cides with certain asymmetry of recombination. Namely, earlier 

a striking difference was found between A and B genomes in 
recombination distribution, reflected in high marker clustering in 
the B but not in the A genome (Peng et al., 2000).

Evidence of genome asymmetry in the context of domesti-
cation was obtained in other plants as well. In both species of 
independently domesticated cotton, Gossypium hirsutum and G. 
barbadense, transcription of genes related to fibre development, 
the major target of selection in domesticated Gossypium, was 
found to be preferentially enhanced in the D genome when com-
pared with the A genome (Hovav et al., 2008), despite the fact 
that D-genome diploids do not produce spinnable fibres. This bias 
in favour of the D genome coincides with a predominant occur-
rence of fibre-related QTL (~70%) on the D genome (Paterson, 

Table 3. Genome asymmetry in the control of agronomic traits in domesticated durum (genome BBAA) and bread wheat (genome 
BBAADD) [Data from the 2008 wheat Gene Catalogue (http://wheat.pw.usda.gov/GG2/index.shtml)]

Traits Traits under control of

Genome A Genome B Genome D

Elongated glumes Eg P1 on 7AL Eg P2 on 7BL (?)
Branched spikes Bh on 2AS
Non-brittle rachis br A1 on 3AS br B1 on 3BS

br A2 on 2A
Free-threshing Q on 5AL
Non-tenacious glume tg2 on 2BS tg1 on 2DS
(lax glume)
Reduce plant height Rht7 on 2A Rht B1 on 4BS Rht D1 on 4DS

Rht12 on 5AL Rh4 on 2Bl Rht8 on 2DL
Rht5 on 3BS
Rht9 on 7BS
Rht13 on 7BS

Grain protein content Gpc B1 on 6BS Pro1 on 5DL
Pro2 on 5Ds

Grain hardness Ha on 5DS
Puroindolines and grain Pin D1 on 5DS
softness protein
Gibberellic acid response Ga1, Ga3 on 4BS Ga2 on 4DS
Waxiness W1 on 2BS W2 on 2DS (?)
Epistatic inhibitors W1I on 2BS W2I on 2DS
of waxiness W3I on 1BL
Male sterility Ms3 on 5AS ms1 on 4BS Ms2 0n 4DS

ms5 on 3A Ms4 on 4DS
Pairing homoeologous Ph1 on 5BL Ph2 on 3DS
Hybrid necrosis Ne1 on 5BL

Ne2 on 2B
Hybrid chlorosis Ch1 on 2A Ch2 on 3DL
Aluminium tolerance Alt2 on 4DL
Boron tolerance Bo1 on 7BL
Low cadmium uptake Cdu1 on 5BL
Iron deficiency Fe2 on 7BS Fe1 on 7DL
Difenzoquat insensitivity Dfg 1 on 2BL
Chlortoluron insensitivity Su1 on 6BS
Imidazolinone resistance Imi3 on 6AL Imi2 on 6BL Imi1 on 6DL
Response to photoperiod Ppd-B1 on 2BS Ppd-D1 on 2DS
Response to vernalization Vrn-A1 on 5AL Vrn-B1 on 5BL Vrn-D1 on 5DL

Vrn-B3 on 7BS Vern-D4 on 5DL
Vern-D5 on 5DL

Response to salinity Kna1 on 4DL
Frost resistance Fr1 on 5AL Fr2 on 5DL
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2002). These findings were further supported by Xu et al. (2010) 
who compared the distribution of the fibre development genes 
and transcription factors in the cotton A and D genomes, using 
genetic and physical mapping techniques. More transcription fac-
tors were from D than from A, while opposite trends were found 
for fibre development genes. These results, combined with pre-
vious publications on the prevailing abundance of fibre QTLs 
in the D-genome, were explained as hypothesis detailed below 
(Hovav et al., 2008). After merging of the two diploid Gossypium 
genomes, the A genome of the allotetraploid continued to func-
tion in a similar manner as its fibre-producing A-genome ancestor, 
while the D genome, coming from the non-fibre-producing ances-
tor, provided more transcription factors regulating the expression 
of the fibre genes than the A genome did.

Another example of genome asymmetry in allopolyploid cot-
ton Gossypium hirsutum was recently found in the accumulation 
of seed storage proteins (Hu et al., 2011). A higher degree of 
proteomic similarity was found between the allopolyploid and 
its D-genome donor than between its A-genome donor. Hu et al. 
(2011) concluded that unequal expression of proteins from dip-
loid parental genomes occurs in allopolyploids.

Discussion

Evolvement of multiple gene loci in allopolyploids

The reviewed evidence can be best explained by assuming 
that the genetic and epigenetic changes in the newly formed 

allopolyploid wheat species led to the construction of two con-
trasting genetic systems: (i) retention of expression of all homoe-
oalleles of those duplicated or triplicated gene loci whose extra 
gene dosage has a positive effect by itself or may facilitate the 
build-up of positive inter-genomic interactions between diver-
gent regulation factors, and (ii) elimination or suppression of 
genes from one genome in allotetraploids and from two genomes 
in allohexaploids in those gene loci whose extra dosage or new 
inter-genomic interactions are deleterious, thus bringing about 
genome asymmetry for various traits. The latter process may be 
tissue-specific (Buggs et al., 2011).

In wheat allopolyploids, as discussed above, different gene 
types show a differential propensity for homoeologous change 
or retention. Genes encoding functional proteins (enzymes) con-
stitute one category of genes that shows a high degree of reten-
tion of homoeoalleles (Mitra and Bhatia, 1971; Hart, 1983a, b, 
1987). Such retention enables inter-genomic interactions at both 
the transcriptional level and between gene products, giving rise 
to ‘hybrid’ functional proteins in multimeric enzymes consisting 
of subunits encoded by different genomes. These new hetero-
meric proteins may have new and desirable properties. Similarly, 
protein complexes, such as gluten, may also be ‘hybrid’. These 
inter-genomic protein interactions seem also to have had direct 
relevance to wheat cultivation. For example, the baking qual-
ity of allohexaploid wheat (bread wheat) is due to the unique 
properties of its gluten, a product derived from the combined 
contribution of multiple subunits encoded by the three genomes 
of hexaploid wheat.

The retention of genes corresponding to trans-acting factors, 
such as transcription factors, suppressors, and microRNAs, may 
enable the generation of novel trans interactions that may lead to 
new expression patterns absent in the diploid parents, as seen in 
yeast (Tirosh et al., 2009).

For other categories of genes, a lack of retention of paren-
tal genes or the expression patterns is frequent and non-random. 
This includes the genes that encode for ribosomal RNA, for 
structural proteins, such as histones and subunits of tubulins, and 
for storage proteins, such as subunits of glutenins and gliadins. 
In these cases, expression of all homoeoalleles may be redun-
dant, resulting in over-production and even deleterious dosage 
effects. In addition, activity of all homoeoalleles may produce 
intermediate phenotypes in several traits that decrease the viabil-
ity of the plants (e.g. hybrid incompatibility genes). Hence, for 
some traits, control by genes from only one genome (genome 
asymmetry) may have a higher adaptive value than additive 
expression, preventing a genomic clash or avoiding deleterious 
dosage effects. Non-random elimination of DNA sequences, as 
reported in wheat (Levy and Feldman, 2004; Feldman and Levy, 
2005), may contribute to genome asymmetry in alloployploids.

The new evidence presented by Wicker et al. (2011), obtained 
by next generation sequencing of individual wheat group 
1-sorted chromosome arms, indicates that very different levels 
of amplifications of gene sequences occurred between the three 
wheat genomes. This kind of gene amplification seems also to 
have played an important role in homoeologous genome diver-
gence and may also contribute to genomic asymmetry.

Unequal retention of genes is not unique to allopolyploid 
wheat; it has also been reported in allotetraploid soybean 

Table 4. Genome asymmetry in the control of reaction to 
diseases or pests in the domesticated durum wheat (genome 
BBAA) and bread wheat (genome BBAADD) [data from the 2008 
wheat Gene Catalogue (http://wheat.pw.usda.gov/GG2/index.
shtml) in the control of reaction to diseases or pests]

Disease/pest Number of functional genes

Genome A Genome B Genome D

Barley yellow dwarf virus 3
Powdery mildew 9 11 8
Russian wheat aphid 1 7
Cochlibolus root rot 1
Fusarium head scab 3 1
Cereal cyst nematode 2 1
Magnaporthe grisea 1 1 1
Hessian fly 10 2 6
Septoria tritici 4 6 3
Septoria nodorum 2 1
Root lesion nematode 1
Stem rust 5 13 7
Stripe rust 4 21 7
Leaf rust 6 19 3
Tan spot 1 3 1
Wheat midge 1
Greenbug 1 2
Eyespot 1 1
Karnal bunt 4 1
Wheat yellow mosaic 
virus

1

Total 45 88 51
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(Coate et al., 2011). Tate et al. (2006, 2009), Buggs et al. (2009, 
2010a), and Koh et al. (2010) demonstrated, via cDNA–AFLPs 
followed by genomic and cDNA cleaved amplified polymorphic 
sequence (CAPS) analyses, that one parental gene copy was lost in 
several homoeologous loci of natural allotetraploid Tragopogon 
miscellus and in allotetraploid T. mirus. Moreover, expression of 
only one parental gene copy was detected in several other homoe-
ologous loci. On the other hand, allele loss or silencing was not 
detected in synthetic T. miscellus (Buggs et al., 2009, 2010a), 
indicating that these changes occur during the life history of the 
allotetraploid. By contrast, immediate gene elimination occurred 
upon allopolyploidization in allotetraploid Triticum turgidum 
and allohexaploid T. aestivum (Liu et al., 1998b; Shaked et al., 
2001) and in allohexaploid and allooctoploid Triticale (a wheat–
rye allopolyploid) (Ma and Gustafson, 2008). Similarly, imme-
diate gene silencing was observed in allotetraploid Arabidopsis 
suecica (Wang et al., 2006a, b), allohexaploid Senecio c ambrensis 
(Hegarty et al., 2005, 2006), allotetraploid cotton (Adams et al., 
2004; Flagel et al., 2008) and allopolyploid wheat (Shaked et al., 
2001; Kashkusk et al., 2002).

Genetic diploidization is not a random process, distinctly 
affecting specific gene categories and their corresponding traits 
and forming a clear-cut division of tasks between the constituent 
genomes of allopolyploid wheat. The A-genome preferentially 
controls morphological traits, while the B-genome in allotetra-
ploid wheat and the B and D genomes in allohexaploid wheat 
preferentially control the reaction to biotic and abiotic fac-
tors. The process of genetic diploidization is also non-random 
in rRNA-encoding genes and storage protein genes, affecting 
mostly genes of genome A. Genetic diploidization may occur 
during or immediately after allopolyploidization (revolutionary 
changes), e.g. in rRNA-encoding genes, or through the life his-
tory of the species (evolutionary changes), for example, in HMW 
glutenin genes.

The stage of allopolyploid formation will dictate if genetic 
diploidization results from homoeologous recombination, ille-
gitimate recombination, or gene conversion. Some of these pro-
cesses may contribute to the reconstruction of the homoeologous 
chromosomes through the course of cytological and genetic dip-
lodization. There is evidence that considerable genetic changes 
in artificially resynthesized Brassica napus resulted from 
homoeologous recombination (Gaeta and Pires, 2010, and refer-
ences therein). After genome merging, a portion of genes can 
undergo directed genetic or epigenetic changes, resulting in gene 
loss or silencing. Obviously, diploidization yielding suppression 
of homoeologous recombination does not necessarily lead to 
universal exclusion of gene conversion, especially in the large 
orthologous blocks of retained genes, such as rice chromosomes 
11 and 12 and their sorghum orthologues 5 and 8 (Wang and 
Paterson, 2011).

Mechanisms responsible to genomic asymmetry

Genome asymmetry may be brought about by either transcrip-
tional dominance of one of the parental genomes (Wang et al., 
2006b; Flagel et al., 2009; Rapp et al., 2009; Flagel and Wendel, 
2010) or inter-genomic suppression of gene activity (Galili and 
Feldman, 1984), due to incompatibility of regulatory elements 

(He et al., 2003; Tirosh et al., 2009), chromatin modification 
(Wang et al., 2006b) or suppression of genes adjacent to trans-
posable elements (Kashkush et al., 2003). Differential elimina-
tion or inactivation of coding sequences from one of the parental 
genomes in allotetraploids and from two of the parental genomes 
in allohexaploids contributes to the asymmetrical control of the 
constituent genomes (Feldman and Levy, 2009; Tate et al., 2006; 
Buggs et al., 2009, 2010a, b; Koh et al., 2010). Some major 
transcriptional suppressors, or small non-coding RNAs, such 
as microRNAs (Ha et al., 2009), may also have genome-wide 
effects on asymmetry through the suppression of several tar-
gets that, in turn, can affect a cascade of genes, thus leading to 
asymmetry.

Significance of genomic asymmetry in the evolution of 
allopolyploids

The ability of one genome to suppress the activity of genes 
of another genome and thus, fully to control a set of traits in 
allopolyploids, may prevent conflicting gene expression that 
could potentially lead to defective organ shapes. This protective 
mechanism ensures the development of viable plants. Diploid 
species that lack this adaptive ability might fail to produce viable 
allopolyploids. There are two diploid wheat species and 11 dip-
loid Aegilops species [including Amblyopyrom muticum (=Ae. 
mutica)] (Eig, 1929; van Slageren, 1994), most of which have 
geographical contact with one another (Kimber and Feldman, 
1987; van Slageren, 1994). Many more allopolyploid species, 
apart from the currently existing ones, may have been generated 
over the 2–4 million years of the existence of the diploid spe-
cies (Huang et al., 2002). Allopolyploids involving the AD, AC, 
AM, AN, AU, AT, UD, UT, DS, and DT genomic combinations 
can be produced under artificial conditions, but have not been 
found in nature. We speculate that such hybrids and/or allopoly-
ploids have reduced fitness, due to desirable genomic asymmetry 
manifested by some degree of inter-genomic incompatibilities 
overcome through silencing of incompatible loci from one of 
the parents.

Cytological diploidization of allopolyploids, during or soon 
after their production, provides the physical basis for their 
strict intra-genomic pairing of fully homologous chromo-
somes. Restriction of meiotic pairing and recombination to 
fully homologous chromosomes, coupled with a pre-dominant, 
self-pollination system, sustains the co-existence and mainte-
nance of two contrasting systems in allopolyploid plants, namely, 
fixation of heterozygosity between homoeoalleles and genomic 
asymmetry. Inter-genomic pairing would have led to disrup-
tion of the linkage of the homoeoalleles that contribute to posi-
tive inter-genomic interactions and to the segregation of genes 
that participate in the asymmetrical genomic control of certain 
desirable traits. In conclusion, these two contrasting systems, 
related to the fate of duplicated or triplicated genes in allopoly-
ploids, are especially important for the evolutionary success of 
these plants. Indeed, allopolyploids of the genera Aegilops and 
Triticum are very evolutionarily successful; they are aggressive, 
efficient colonizers, compete well with their diploid progenitors, 
are distributed over a larger geographical area, occupy more 
versatile habitats, and exhibit wider ranges of morphological, 
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biochemical, and molecular variations than their parental diploid 
species (Zohary and Feldmam, 1962; Feldman, 1965; Zohary, 
1965; Kimber and Feldman, 1987).

Rapid progress of structural and functional Triticeae genomics 
will enable further insight into the mechanisms and functional 
importance of genomic asymmetry in wheat allopolyploids and 
other allopolyploids of this tribe.
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