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Abstract: The epigenetic effects of cytosine methylation on gene expression are an 

acknowledged source of phenotypic variance. The discordant monozygotic (MZ) twin design 

has been used to demonstrate the role of methylation in disease. Application of the classical 

twin design, featuring both monozygotic and dizygotic twins, has demonstrated that individual 

differences in methylation levels are attributable to genetic and environmental (including 

stochastic) factors, with the latter explaining most of the variance. What implications epigenetic 

sources of variance have for the twin modeling of (non-epigenetic) phenotypes such as height 

and IQ is an open question. One possibility is that epigenetic effects are absorbed by the variance 

component attributable to unshared environmental. Another possibility is that such effects 

form an independent source of variance distinguishable in principle from standard genetic and 

environmental sources. In the present paper, we conceptualized epigenetic processes as giving 

rise to randomness in the effects of polygenetic influences. This means that the regression 

coefficient in the regression of the phenotype on the polygenic factor, as specified in the twin 

model, varies over individuals. We investigate the consequences of ignoring this randomness 

in the standard twin model.
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Introduction
The classical twin design is an important tool in the study of the genetics of complex (non-

Mendelian, polygenic) traits.1,2 It involves the inference of genetic and environmental 

effects from the comparison of the phenotypic correlation among monozygotic (MZ) and 

dizygotic (DZ) twins. A derived design is the discordant MZ (DMZ) twin design, which 

involves the study of MZ twins, who are phenotypically discordant. The discordancy 

may pertain to a binary disease status, ie, affected versus non-affected status, or to a 

metric phenotype, such as birth weight or intelligence. The DMZ design is a case-control 

design, with closer than usual matching between cases and controls, as the MZ twins are 

clones, and share many environmental influences, including prenatal environment. In 

contrast to the classical twin design, which is used to decompose phenotypic variance 

in genetic and environmental components, the DMZ design is used to identity unshared 

effects that may shed light on the causes or consequences of the MZ discordancy with 

respect to the phenotype of disease of interest.3

One might think that the advent of (increasingly cheaper) high-throughput 

genotyping technologies would have reduced the role of the twin design in the study 

of complex traits. In one sense this is indeed the case: the availability of large volumes 

of common genetic variants (GVs; notably, single nucleotide polymorphisms; SNPs) 
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has enabled researches to go from estimating total genetic 

variance components using twins to estimate the variance 

explained by the measured SNPs,4,5 and to identify the GVs 

contributing to the genetic variance in genome-wide associa-

tion studies (GWAS).6 However, the twin design has remained 

relevant given the shift toward the study of genome-wide gene 

expression and its epigenetic regulation. The twin design 

has been used to determine the contributions of genetic and 

environmental influences to individual differences in gene 

expression7 and epigenetic marks, such as cytosine methyla-

tion, which are relevant to expression.8 The DMZ twin design, 

if anything, has gained relevance given the availability of 

measured (genome-wide) gene expression and epigenetic 

data.9,10 Such data can be mined for causes or consequences 

of discordancy.11,12 This extends the scope of unshared effects, 

the focus of the DMZ twin design, from the environmental 

to the genetic realm, including both structural differences 

affecting the DNA sequence (point mutations, de novo copy 

number variation (CNV) differences, and aneuploidy13–15) 

and functional differences (gene expression and epigenetic 

marks). The presence of such differences emphasizes the 

fact that twins may be MZ, but are not necessarily geneti-

cally identical.16 Studies of whole genome sequencing in MZ 

pairs suggested that sequence-level differences are rare.17,18 

A recent review on de novo mutations concluded that post-

zygotic de novo mutations are rare.19

Studies showing that complex-trait-associated variants 

identified through GWAS are largely enriched in regulatory 

regions of the genome suggest that variation in transcriptional 

control in relevant tissues plays a key role in individual dif-

ferences in complex traits. The role of epigenetics and gene 

expression in complex phenotypes raises the question of 

how such effects should be represented in the twin model. 

The genetic effects in the twin model are based on the bio-

metric model, which relates genotypes to a fixed genotypic 

effect and derives a polygenic effect from the summation of 

multiple fixed genetic effects.20 Environmental effects are 

defined as effects not genetic, where shared effects account 

for any phenotypic resemblance exceeding that attributable 

to allele sharing, and unshared effects form a residual term 

of all non-genetic effects that cause differences between 

twins. As such, the twin model comprises little more than a 

fixed effects regression model in which a given phenotype 

is regressed on latent genetic and environmental variables. 

This model does not include an explicit account of how 

environmental effects impinge on the phenotype. Epigenetic 

processes are of interest in this regard, because internal and 

external environmental causes of methylation, for instance, 

provide a basis for an explicit account of how environmental 

factors may exert their influences.21 For instance, Castillo-

Fernandez et al10 note that

use of epigenetic markers of environmental risk would 

greatly improve our understanding of the molecular basis 

of disease, as many complex traits have an environmental 

risk component that is often difficult to define and assess. 

Therefore, using epigenetic markers of environmental disease 

risk would help to identify environmentally driven disease 

mechanisms, including gene–environment interactions.

Given that epigenetic control of gene expression is a 

function of stochastic events, environmental effects (shared 

and unshared), and genetic effects,8,22–24 what bearing does 

this have on the interpretation of the results of standard twin 

studies?

The aim of the present paper is to consider the 

implications of the results of recent genetic and epigenetic 

studies based on the DMZ design and the twin design. Spe-

cifically, we ask how we should represent epigenetic effects 

in the classical twin model, and what the implications are 

for the results obtained with the classical twin design. One 

interpretation of epigenetic effects on gene expression is 

that they form a third source of phenotypic variance, which 

in humans cannot be distinguished from unshared envi-

ronmental effects.25,26 An alternative interpretation, which 

takes into account the possibility that epigenetic effects 

may in part be under genetic control, is that they form a 

distinct source of variance besides the traditional genetic 

effects attributable to variation in the DNA sequence.23,27 

We present a conceptualization of epigenetic effects based 

on moderation of genetic effects. Specifically, we identify 

epigenetic effects as sources of interaction between the effect 

of genotype (DNA sequence variation) and any other effect 

(environmental, stochastic, and genetic), which gives rise 

to changes in the effects of the genotype on the phenotype 

by affecting gene expression.

The outline of this paper is as follows. We present the clas-

sical twin design briefly, outlining the fact that the twin model 

can be viewed as a fixed effects model. Subsequently, we 

review twin studies of methylation levels and discordant twin 

studies of the role of methylation in disease. As methylation 

is viewed as a source of variation in gene expression, we 

propose that variation in methylation levels may give rise to 

randomness in the genetic parameters in the twin model. We 

consider the consequences of ignoring this randomness in the 

twin design. Specifically, how does ignoring this randomness 

affect the results of a twin study?
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The classical twin design
The classical twin design allows one to regress phenotypic 

scores (y) on a set of latent (unobserved) variables, so as 

to determine the proportion of phenotypic variance that is 

explained by the latent variables. In many twin studies, the 

latent variables comprise the additive polygenic variable 

(A), shared environmental (C), and unshared environmental 

variables (E), and the regression model is

	 y
ij
 = b

0
 + a

y
*A

yij
 + c

y
*C

yij
 + e

y
*E

yij
,	 (1)

where y represents the phenotype of interest, subscript 

i denotes twin pair, subscript j denotes twin member within 

a pair, b
0
 is the intercept, and a

y
, c

y
, and e

y
 are regression 

coefficients. As the variables A
y
, C

y
, and E

y
 are unobserved, 

we cannot observe their means and variances. This poses 

no problem, as we can impose a scale by standardization 

(zero mean and unit variance). Sometimes, a non-additive 

genetic factor, referred to genetic dominance (D
y
), is modeled 

instead of C
y
. This choice (D

y
 or C

y
) is usually based on the 

inspection of the twin correlations. Whereas C
y
 increases 

the resemblance of both MZ and DZ pairs, D
y
 increases the 

resemblance of MZ pairs more than that of DZ pairs. The clas-

sical twin design is not possible to include both C
y
 and D

y
 as 

this model (including A
y
 and E

y
) is not identified.1,20,28 To ease 

presentation, we assume that D
y
 is absent. Assuming A

y
, C

y
, 

and E
y
 are uncorrelated, we have the following decomposition 

of the variance of the phenotype y:

	

σ σ σ

+ σ

2
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y
2

y y y y
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( ) = ( ) + ( )
( ) = + +
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where the phenotypic variance, σ2(y), attributable to unshared 

environmental effects (E
y
) may include (measurement) error 

variance. The heritability, denoted h
y
2, is the standardized 

genetic variance component, ie, h
y

2 = a
y

2/(a
y

2 + c
y

2 + e
y

2). 

This decomposition is identified in the twin design given the 

assumptions that the correlation between A
y
 of the first (A

y1
) 

and second twin (A
y2

) members of a twin pair, cor(A
y1

,A
y2

), 

equals one in MZ twins and one half in DZ twins. The latter 

is the expected proportion of alleles shared identically by 

descent in full sibs under the assumption of random mating.29 

The former follows from the working assumption that the 

MZ twins are genetically identical (but see Czyz et al14,15). 

Furthermore, we have cor(C
y1

,C
y2

) = 1 and cor(E
y1

,E
y2

) = 0 

by definition of shared and unshared environmental effects. 

That is, the shared environmental influences C contribute to 

similarity between members of a twin pair, while the unshared 

influences contribute to differences. We thus can express the 

twin covariances cov(y
i1
y

i2
) as 0.5*a

y
2+c

y
2 in DZ twins and 

a
y
2+c

y
2 in MZ twins, which along with Equation 2, allows us 

to estimate the parameters a
y
, c

y
, and e

y
. This is typically done 

by means of genetic covariance structure modeling using 

maximum likelihood estimation.30

In Equation 1, the phenotype y is assumed to be continuous. 

However, a binary phenotype, such as disease status, can 

be modeled in essentially the same way using the liability 

threshold model.31 In this model, we assume that the binary 

disease status is the manifestation of an underlying complex 

liability dimension (aka vulnerability). The liability is a con-

tinuous latent phenotype which is related to A
y
, C

y
, and E

y
, as 

in Equation 1. Disease status depends on the liability in that a 

score on the liability beyond a given threshold value is associ-

ated with a diagnosis of being affected (eg, suffering major 

depression). The threshold value itself is a function of diag-

nostic criteria, and therefore possibly arbitrary. In the twin 

model of a binary variable, Equations 1 and 2 are applied to 

the bivariate liability, with the identifying constraint that the 

variance of the liability equals one (ie, a
y

2 + c
y
2 + e

y
2 = 1). 

This model is consistent with the view of disease etiology as 

a function of polygenic and environmental effects. It should 

be noted that relatively high liability heritability does not 

necessarily imply high concordance.32 For instance, given a 

liability h2 of 0.80 and a disease prevalence of 1% (approxi-

mately the situation concerning schizophrenia), we expect 

to observe ∼1.25% of the MZ twin pairs to be discordant, 

and the MZ proband-wise concordance rate to equal ∼37.6 

(DZ twin values are ∼1.83% and ∼8.66, respectively). The 

relatively low proband-wise concordance rate in combination 

with high heritability is consistent with the additive model 

given in Equations 1 and 2. Although low concordance is 

often interpreted as indicative of possible gene–environment 

interplay, a seemingly low proband concordance rate neither 

implies, nor rules out, such an interplay.

The DMZ design directly follows from the twin design. 

Any difference between MZ twins must be attributable 

to unshared effects (E
y
), as genetic effects and shared 

environmental effects are a source of resemblance, not of 

difference. However, as noted above, unshared effects relevant 

to discordance may include genetic features.14,15 In the case 

of a metric (continuous) phenotype, MZ phenotypic differ-

ences can be tested for association with differences in other 

variables by means of a regression model.33 As explained in 

Gurrin et al34 this model need not actually be limited to MZ 

twins, as the model can be extended to include DZ twins. In 

the case of a binary phenotype (eg, disease status), a logistic 

regression model or MacNemar’s test can be used.
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The fixed effects in the twin model
We view the twin model (Equation 1) as a fixed effects model, 

in the sense that the regression parameters a
y
, c

y
, and e

y
 are 

assumed to be invariant over individuals. This assumption 

pertains to the ideal situation, in which the model (Equations 1 

and 2) holds with respect to all individuals in the population 

of interest (in statistical terms, this implies that the data are 

identically and independently distributed35). This fixed effects 

aspect of the model extends to the biometric model underlying 

the polygenic variable A, as this is the summation of individual 

effects of many GVs. In this model, each genotype at a given 

locus is assigned a genotypic effect. For example, in the case of 

a diallelic locus k (alleles B
k
, b

k
), the effects are µ

k
 + β

k
 (B

k
B

k
), 

µ
k
 + δ

k
 (B

k
b

k
) and µ

k
 − β

k
 (b

k
b

k
), where µ

k
 is the midparent 

value, β
k
 is the homozygote effect, and δ

k
 is the dominance 

deviation, which we assume to be zero here. Here, the effect 

β
k
, which equals the regression coefficient in the regression 

of y
k
 on locus k (where B

k
B

k
, B

k
b

k
, and b

k
b

k
 are coded −1, 0, 

and 1, respectively), is invariant over individuals, but β
k
 (k=1 

… K) is variable over the K loci relevant to the phenotype.

The possibility that the regression parameters in the twin 

model may differ as a function of a covariate is generally 

recognized. For instance, the twin model can be extended 

to include opposite-sex DZ twin pairs, alongside male and 

female MZ and DZ twins.1 This extended model can be used 

to test the (arguably epigenetic) hypothesis that a
y
 varies over 

sex, ie, the effect of genes on the phenotype of interest varies 

with sex, giving rise to a sex by genotype interaction. The 

presence of DZ opposite-sex twins allows for the additional 

test of the hypothesis that sex differences in the parameter 

a
y
 originate in the effects of different genes in males and 

females, or in the sex moderation of the effects of a single 

set of genes.1 Purcell36 and Zheng and Rathouz37 presented a 

general moderation model, in which the genetic and environ-

mental effects on a given measured phenotype (say, depres-

sion) may be moderated by an environmental phenotype (say, 

marital status), while taking into account the possibility that 

the latter may itself be subject to genetic effects. Although 

it is standard fare to test the hypothesis that the parameters 

in the twin model vary with respect to a well defined and 

measured covariate, we conceptualize epigenetic effects on 

the parameter a
y
 due to a latent (individual level) index of 

epigenetic influences.

Epigenetics: cytosine methylation
The modern definition of epigenetics emphasizes the regula-

tion of gene expression that can be transmitted mitotically 

independent of DNA sequence. For instance, Tan33 states: “In a 

broad sense, the epigenetic control over gene activity involves 

multiple molecular mechanisms (…), all of which act as 

‘volume controls’ that up- or down regulate a gene’s expres-

sion without changing its DNA sequence”. These molecular 

mechanisms, which include histone modifications, DNA 

methylation, and non-coding RNAs,38 are key mechanisms 

in establishing tissue identity.39 Most studies of epigenetics 

in humans have focused on cytosine methylation, which 

occurs mainly at cytosines in cytosine–phosphate–guanine 

(CpG) dinucleotides. The effect of methylation on expres-

sion is position dependent: gene body CpG methylation is 

associated with transcriptional activity, while CpG methyla-

tion at promoter regions generally represses this activity.40 

The expression level of genes may be particularly related 

to the methylation level of their enhancers.41 Methylation 

results in changes in gene expression, which are mitotically 

heritable, but potentially reversible. While most CpGs are 

methylated,42 unmethylated CpGs may occur in clusters 

called CpG islands, which are present in the 5-prime regula-

tory regions of approximately 70% of human genes. Finally, 

methylation plays an important role in the silencing of repeti-

tive elements such as transposons.43 Individual differences in 

cytosine methylation are well established in clinical studies 

and twin studies. One source of individual differences in 

cytosine methylation is defects in imprinting, where normally 

the allele originating from one parent is silenced by means 

of methylation. A second source is epimutations, giving rise 

to variation in cytosine methylation, which may be due to 

stochastic errors (during mitosis), environmental, and genetic 

factors. Genetic factors associated with individual epigenetic 

differences that have been identified thus far include SNPs 

(ie, methylation quantitative trait locus,44,45 Bell et al46) and 

structural variation.47,48

The classical twin design and the DMZ design are rec-

ognized as a useful tools in epigenetic studies.3,11,23,27,49,50 The 

DMZ design allows for the assessment of the disease 

association with differences in methylation, which is not 

confounded by genomic sequence variation. We note that 

post-zygotic mutations may undermine this design, as these 

introduce sequence variation between MZ twins at the 

loci of the mutations. Dal et  al51 estimated that 5%–25% 

of the de novo mutations were post-zygotic in a healthy 

MZ twin pair, where the overall de novo mutation rate is 

0.82–1.70×10−8 per base pair per generation (in the twins, 

this was 1.31×10−8 and 1.01×10−8). Acuna-Hildago et  al52 

estimated that each individual carries 2–7 post-zygotic de 

novo mutations. Zwijnenburg et  al,12 Bell and Saffery,23 

Czyz et al,14 Castillo-Fernandez et al,10 Tan,33 and Tan et al49 
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presented reviews of the results of genome wide and candi-

date gene (or region) epigenetic studies of DMZ twins. These 

studies concern a wide variety of medical disorders (eg, 

multiple sclerosis, asthma, Alzheimer’s disease, breast cancer, 

systematic lupus erythematosus, type I diabetes, and psoria-

sis), psychiatric disorders (schizophrenia, major depressive 

disorder, bipolar disorder, and autism spectrum disorders), 

psychological traits (ADHD [attention deficit hyperactivity 

disorder], risk-taking, and antisocial behavior), and physical 

traits (birth weight and Body Mass Index). Although these 

studies vary greatly in the scope and method of assay, tis-

sue sample, statistical methods, and sample size, virtually 

all demonstrated (and often replicated; Castillo-Fernandez 

et al10) epigenetic differences relating to methylation.

Czyz et al,14 Bell and Saffery,23 and Bell and Spector27 

reviewed the twin studies of methylation, based on either 

the classical twin design, or on MZ twins only. The aim of 

these studies is to establish whether genetic factors (DNA 

sequence variation) contribute to individual differences 

in methylation levels. A well-established finding is the 

increase with age of MZ epigenetic discordance, which 

may reflect the accumulation of epimutations due to 

stochastic errors and environmental influences.53 This has 

been demonstrated cross-sectionally and longitudinally.54 

Chorionicity is implicated as mono-chorionic MZ twins 

are more discordant than dichorionic MZ twins55 (Saffery 

et al),56 which suggest that late twining is a factor. Heritabil-

ity of methylation level is both tissue dependent and genomic 

region dependent.55,57

van Dongen et al22 conducted a genome wide study of 

methylation based on buccal cells in ten 8–19-year-old MZ 

twin pairs. The overall average MZ correlation was 0.54 at 

CpG displaying high variability. The correlation varied as a 

function of region with higher correlations at CpG located 

in CpG islands, and lower correlations (ie, a greater role of 

unshared effects, including stochastic errors) in CpG poor 

regions. Bell et al23 reported a genome-wide average h2 of 0.18, 

based on an adult twin (30−80 years) study of DNA methyla-

tion in blood in 137 females twin pairs. A drawback of the twin 

design in this context is that the MZ correlation may vary due 

to intrauterine factors24 and epigenetic starting point in the 

zygotic stage.21 McRae et al8 studied genome-wide methyla-

tion measures in peripheral blood lymphocytes, in an extended 

twin design, including adolescent twins, their siblings, and 

parents (614 individuals in 117 families). This design is 

appreciably less dependent on MZ data as it involves many 

additional relationships. McRae et al reported an average h2 of 

0.20, with ∼65% of the 417,069 probes displaying h2 greater 

than zero.8 Shared environmental influences explained very 

little variation in methylation levels.

In summary, epigenetic individual differences, pertaining 

to cytosine methylation, are largely attributable to unshared 

factors (unshared environmental effects and stochastic 

errors), and to a lesser extent to genetic factors. The relative 

contributions of genetic and environmental factors to vari-

ance vary with age, tissue and (genomic) region. The study 

of MZ twins discordant for disease has demonstrated the role 

of epigenetics in disease etiology.

Epigenetics as a source of random 
effects
As mentioned earlier, the twin design essentially allows 

us to carry out a regression analysis with the phenotype 

of interest (say, intelligence) as the dependent variable and 

the unmeasured genetic and environmental variables as 

independent variables. Supposing that we knew that individual 

differences in methylation were relevant to this phenotype, 

how should we represent these effects in the twin model, and, 

if ignored, what effect would they have on the decomposition 

of variance? The literature includes several different 

representations. Epigenetics has been viewed as a third source 

of variance, distinct from genetic and environmental sources. 

Given that this third source of variance is indistinguishable 

from unshared effects, it is supposed to increase the unshared 

environmental variance in the twin model.25,26 This third source 

view was inspired by Gartner’s famous experiments, which 

demonstrated that isogenic organisms raised in homogeneous 

environmental circumstances display appreciable phenotype 

variance, presumably due to epigenetic effects stemming from 

stochastic errors.58 Czyz et al14 questioned this interpretation 

for the following reason:

(…) the concept of stochastic epimutations as the 

third source of variation in opposition to genetic and 

environmental effects has important limitations because it 

is not evident that the random faults in methylation main-

tenance are not themselves genetically determined (…), or 

of environmental origin.

This does not detract necessarily from the third source 

interpretation in isogenic organisms in homogenous or 

enriched environments.59 However, it seems unlikely that 

the representation in terms of a third source of variance 

mimicking unshared environmental effects is accurate in 

outbred human populations. In outbred populations, we have 

to incorporate epigenetic effects within the effects of DNA 

sequence differences and environmental differences.
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Bell and Spector27 and Bell and Saffery23 represent DNA 

methylation effects explicitly as an independent source in 

the twin model, ie, a latent variable denoted M along side 

the latent variables A
y
, C

y
, and E

y
. The twin correlation with 

respect to M may vary depending on age, tissue, etc. However, 

as the correlation is not generally zero, the M cannot be 

accommodated as a component of E
y
. This representation 

acknowledges the fact that shared environmental factors 

(eg, chorionicity and age) and shared genetic factors may 

contribute to epigenetic individual differences. However, 

in our view the representation of epigenetic effects as a 

distinct source of variance does not sit well with the role 

of epigenetics as pertaining to gene expression regulation. 

That is, this representation assigns epigenetics the role of a 

main effect on the phenotype, alongside A
y
, C

y
, and E

y
. But 

cytosine methylation is an effect on the expression of DNA 

sequence, and as such a source of moderation of genetic 

effects. We consider such moderation to be interpretable as an 

interaction between the genetic effects (originating in DNA 

sequence variation) and the causes (genetic, stochastic, and 

environmental) of epigenetic effects.

As explained earlier, in the standard twin model, we 

consider the parameter a
y
 as a fixed parameter, ie, not varying 

between members of the population of interest.35 Now, 

given that methylation influences gene expression,60,61 and 

expression influences genetic effect, we propose that the locus 

of the epigenetic effects is the parameter a
y
, ie, the effects of 

DNA sequence variation at loci relevant to the phenotype y. 

In terms of the regression model, this implies that the param-

eter a
y
 is not fixed, but varies over individuals as a function 

of epigenetic individual differences at the loci relevant to the 

phenotype y. Simplifying the model by discarding shared 

environmental effects, we have

	 y
ij
 = b

0
 + a

yij
*A

yij
 + e

y
*E

yij
,	 (3)

where a
yij

 is a random parameter, as indicated by the subject 

subscripts (as above: i for twin pair and j for member of a twin 

pair). This parameter is now effectively a (latent) phenotype 

subject to its own decomposition:

	 a
yij

 = a
a0

 + a
a
*A

aij
 + e

a
*E

aij
,	 (4)

where a
yij

 is moderated by the genetic variable A
a
 (ie, genes 

influences methylation levels) and (external and internal) 

environmental variable E
a
, which includes stochastic errors. 

The model is shown in Figure 1. Note that we allow A
y
 and 

A
a
 to be correlated (parameter r

A
), and we allow E

y
 and E

a
 

to be correlated (r
E
). However, the genetic variables (A

a
 and 

A
y
) are uncorrelated with the environmental variables (E

a
 and 

E
y
), excluding any kind of genotype–environment covariance. 

The effect of A
a
 and E

a
 on the parameter a

y
 may be mediated 

by epigenetic marks such as methylation, which in turn 

influences expression levels.61 The exact causal chain from 

Y

AY EY

eY

11

Y

AY EY

eY

11

EaAa EaAa

aY
aY

aa

ea

aa

ea

1/0.5

1/0.5

A

B

1 1

rA rA
rE rE

11

Figure 1 Twin model with random effects on the parameter ay. Part A is the standard twin model with unshared (Ey) and additive genetic (Ay) effects on the phenotype y; 
part B represents Aa and Ea as sources of randomness in the parameter ay (attributable to epigenetic effects). The parameter ay is encircled to indicate that it is a random 
(latent) variable.
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A
a
 and E

a
 to a

y
 is important, but beyond our primary ques-

tion. That is, assuming the parameter a
y
 is actually random 

due to individual differences in epigenetic and environmental 

processes and outcomes, how will such randomness affect 

the results of a standard twin model, where a
y
 is treated as 

fixed? We address this issue by means of a small simulation 

study.

The consequences of ignoring 
random effects in the twin model
The model in Figure 1 reduces to the standard twin model 

if a
y
 is a fixed value, ie, if the parameters a

a
 and e

a
 are zero. 

In that case, the additive genetic, unshared environmental 

effects (AE) model will fit the twin data well, and the h2, 

equaling a
y

2/(e
y
2 + a

y
2), will accurately reflect the proportion 

of phenotypic variance attributable to additive genetic effects. 

By introducing the random effects by specifying non-zero 

a
a
 and e

a
, we ask: how do such effects, if ignored in the twin 

model, affect the 1) phenotypic variance, 2) the twin cor-

relations, 3) the estimate of h2, and 4) the overall goodness 

of fit of the AE model. To this end, we carried out a small 

simulation study in which we simulated data according to 

Figure 1, with the parameter a
y
 random. We then fitted the 

standard twin model (a
y
 a fixed parameter; ie, ignoring the 

randomness) to determine the effects of the randomness on 

the results.

We set mean (a
y
)=√0.5 and e

y
=√0.5, and we set σ2(a

y
) =0.025, 

0.05, 0.075, and 0.1. Note that randomness in a
y
 implies ran-

domness in the h2 of the phenotype y (Figure 1). Given these 

settings, the mean h2 is 0.5 and the standard deviation in h2 

is approximately 0.11, 0.15, 0.18, and 0.20 (corresponding 

to σ2(a
y
) =0.025, 0.05, 0.075, and 0.1, respectively). We 

define h2 as the proportion of phenotypic variance due to 

genetic factors in a population of individual who share the 

approximately same methylation levels. The h2 of a
y
 was 

chosen to equal 0.2. This relatively low value is inspired by 

the fact that the genetic contributions to phenotypic variance 

in methylation levels are small.8,23 We set the values of r
A
 and 

r
E
 to equal −0.3, 0, or 0.3. We suppose that these correlations 

could assume a non-zero value if the environmental (E
y
) or 

genetic effects (A
y
) on phenotype y also have a direct or an 

indirect effect on methylation. In addition, the genetic corre-

lation may be due to linkage disequilibrium. The simulation 

results were obtained in analyses of 25,000 MZ and 25,000 

DZ pairs. This large sample size ensures precise parameter 

estimates, and very great power to detect model misfit in 

terms of the likelihood ratio test (χ2(4)) of the standard 

AE twin model. This is the test of the AE model versus 

the saturated model, in which the MZ and DZ covariance 

matrices are estimated freely (ie, two-parameter model vs 

six-parameter model; hence, a 4 df test). We simulated the 

data in R,62 and fitted the AE model by means of maximum 

likelihood estimation using the OpenMx library in R.63 The 

R script used in this simulation is available on request. This 

design gives rise to 36 parameter configurations (3 values of 

r
E
, 3 values of r

A
, 4 values of σ2(a

y
)). We limit our discussion 

to the 18 parameter configurations shown in Table 1 (other 

results are available on request) with σ2(a
y
) equaling either 

0.025 or 0.10. We include in the table the values of the 

correlation r
A
 and r

E
 (columns 1 and 2), the variance σ2(a

y
) 

(column 3), the phenotypic variance (σ2
mz

) and correlation 

of the MZs (r
mz

) (columns 4 and 5) and DZs (σ2
mz

 and r
dz

; 

columns 6 and 7), the estimate of the additive genetic and 

environmental variance components (A and E; columns 8 

and 9), the estimate of h2 based on A and E (column 10), the 

χ2 goodness-of-fit index of the AE model (column 11), and 

the expected variance in h2 (column 12), given the variance 

in a
y
 (shown in column 3).

The third row in Table 1 shows the expected values of 

the parameters given σ2(a
y
) =0. The values in the subsequent 

row show the observed values given σ2(a
y
) =0.025 or 

σ2(a
y
) =0.10. Note that in generating the data, σ2(a

y
) is 

0.025 or 0.10, but the results in columns 8–11 were obtained 

by fitting the standard AE twin model, in which a
y
 is not 

a random parameter. The χ2 goodness of fit of the model 

increases with increasing σ2(a
y
), ie, meaning that the model 

fit is poorer as σ2(a
y
) increases. However, given σ2(a

y
)=0.025 

the effect on the χ2 is negligible (Table 1, column 11). Given 

σ2(a
y
) =0.1, the effect is evident, given the expected value 

of the likelihood ratio of 4. However, as the sample size is 

large (50,000), we consider the increase in the χ2 to be minor 

(given α=0.01, the critical value is 13.28). The phenotypic 

variance increases from 1 (σ2(a
y
) =0.0) to approximately 

1.1 (σ2(a
y
) =0.1). The estimates of the twin correlation are 

slightly lower than expected (ie, 0.5 and 0.25): the MZ 

correlations vary between 0.468 and 0.494, and the DZ cor-

relation varies between 0.226 and 0.253. As a consequence, 

the estimate of the heritability is slightly lower than 0.5 

(0.470–0.491). The values of r
A
 and r

E
 appear to have little 

effect on the results. We note that the effects of randomness 

in a
y
 are visible given σ2(a

y
) =0.1, but overall fairly minor. 

The results in Table 1 were obtained with h2 of a
y
 set to equal 

0.2. We also considered a value of 0.5, but the results were 

comparable to those shown in the table (additional results 

available on request). We return to the implications of these 

results in the discussion.
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Discussion
The aim of this paper was to consider the classical twin 

model in the light of epigenetic studies of methylation. Given 

that methylation is a source of variation in gene expression, 

we represented this in the twin model as randomness in the 

genetic regression parameter (parameter a
y
 in Equation 1; 

see also Figure 1). The model is simplistic as it represents 

only a snapshot of a process that may involve feedback from 

phenotype to the environment,64 which in turn may influence 

methylation and gene expression. Yet, this representation 

is consistent with the biological view of methylation as a 

source of interaction, and with the definition of interaction 

in biometrical genetic modeling (ie, as a source of heteroske-

dasticity).28,65 That is, methylation is represented as a cause 

of variation (ie, randomness) in the effects that genes have 

on the phenotype of interest. This representation has the 

advantage that it informs a twin model (Figure 1), which we 

used in a simulation study to assess the effects of ignoring 

such randomness. We assumed randomness in the genetic 

expression at many loci, gives rise to randomness in the 

sum of the effects at these loci, ie, the polygenic variable A
y
. 

However, we did not assume that each locus contributing to 

A
y
 is necessarily subject to the effects of methylation.

On the basis of our small simulation study, we conclude 

that randomness in a
y
 has discernible, but small, effects on the 

results of the classical twin model (in which we ignore this 

randomness). Specifically, the results reflect quite accurately 

the role of E
y
 in terms of the parameter e

y
, and the role of A

y
 

in terms of the mean value of a
y
 in a well-fitting model. So 

assuming randomness in the parameter a
y
, the twin model will 

reflect quite accurately the average genetic effect in terms 

of the h2. The absence of appreciable misfit in terms of the 

likelihood ratio test implies that this test is “blind” to the 

misspecification of treating the random parameter a
y
 as fixed. 

Thus, the twin model produces a good estimate of the aver-

age h2, but sheds no light on the possible standard deviation 

of h2 arising from epigenetic effects. The variation in the h2 

was considerable: the values of given σ2(a
y
)=0.1 implies that 

standard deviation of the h2 was 0.20. We conclude that sen-

sible results obtained in a well-fitting twin model cannot be 

taken to mean that the assumption that the genetic parameter 

is fixed (as mentioned earlier) is correct. Related to this is the 

fact that the twin model cannot detect genetic heterogeneity, 

ie, the possibility that a disease have several distinct genetic 

causes,66 which are hard to distinguish phenotypically. For 

instance, the high heritability of schizophrenia (∼0.80) neither 

implies nor rules out genetic heterogeneity.

Our results were based on quite arbitrary parameter settings 

and limited to an AE model. We tried other settings, which 

we considered reasonable, but obtain largely the same results. 

Table 1 Results of simulation

rA rE σ2(ay) σ2
mz

rmz σ2
dz

rdz A E h2 χ2(4) σ(h2)

0 1 0.5 1 0.25 0.5 0.5 0.5 4 0

-0.3 -0.3 0.025 1.029 0.491 1.022 0.253 0.506 0.519 0.493 2.354 0.11

-0.3 -0.3 0.100 1.114 0.468 1.070 0.230 0.507 0.583 0.465 11.553 0.20

-0.3 0.0 0.025 1.026 0.492 1.026 0.250 0.503 0.519 0.492 1.092 0.11

-0.3 0.0 0.100 1.108 0.481 1.083 0.228 0.523 0.575 0.476 6.327 0.20

-0.3 0.3 0.025 1.012 0.487 1.018 0.243 0.494 0.519 0.488 0.754 0.11

-0.3 0.3 0.100 1.115 0.473 1.102 0.243 0.525 0.582 0.474 2.282 0.20
0.0 -0.3 0.025 1.026 0.492 1.026 0.240 0.504 0.523 0.491 2.439 0.11
0.0 -0.3 0.100 1.102 0.469 1.099 0.244 0.524 0.582 0.474 11.907 0.20
0.0 0.0 0.025 1.030 0.494 1.034 0.251 0.509 0.516 0.496 8.215 0.11
0.0 0.0 0.100 1.096 0.473 1.118 0.234 0.518 0.576 0.473 10.968 0.20
0.0 0.3 0.025 1.031 0.492 1.010 0.235 0.498 0.523 0.488 5.261 0.11
0.0 0.3 0.100 1.102 0.479 1.117 0.226 0.526 0.578 0.476 8.956 0.20
0.3 -0.3 0.025 1.033 0.490 1.026 0.249 0.498 0.519 0.490 9.036 0.11
0.3 -0.3 0.100 1.096 0.472 1.080 0.230 0.518 0.583 0.470 11.282 0.20
0.3 0.0 0.025 1.037 0.490 1.023 0.242 0.500 0.526 0.488 2.234 0.11
0.3 0.0 0.100 1.122 0.475 1.103 0.229 0.517 0.580 0.471 14.623 0.20
0.3 0.3 0.025 1.024 0.494 1.029 0.248 0.510 0.522 0.494 1.892 0.11
0.3 0.3 0.100 1.105 0.473 1.083 0.229 0.518 0.581 0.471 9.343 0.20

Notes: σ2(ay) (column 3) is the variance in the parameter ay, columns 4–7 contain the summary twin statistics as observed in the data (phenotypic variance and phenotypic 
correlation), columns 9 and 10 contain the estimate of the genetic variance (A) and the environmental variance (E) based on the standard AE twin model, h2 is the heritability 
based on these estimates, column 11 contains the goodness-of-fit index of the standard AE model (the critical value given α=0.01 is 13.28). Column 12 shows the standard 
deviation of the h2 (σ(h2)), attributable to the variance in ay (column 3). The results were obtained in the analysis of 25,000 MZ and 25,000 DZ twin pairs.
Abbreviations: AE, additive genetic, unshared environmental effects; DZ, dizygotic; MZ, monozygotic.
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We included C effects on the phenotype, but these did not 

add anything to the results as we obtained the same results of 

good estimates of the effect of E and C, and good estimates 

of the average effects of A. We believe that the representation 

of epigenetic processes as a source parameter randomness 

(in a
y
) in the twin model is plausible, and we are confident 

concerning the effects of such randomness (if ignored) on 

the results of standard twin modeling. However, we make no 

predictions concerning the ultimate importance of epigenetic 

mechanisms in twin studies in general – the importance is 

likely to depend in part on the phenotype. A version of the 

twin model that allows for the estimation of the variance in 

a
y
 would be useful to obtain an indication of the magnitude 

this effect. Such a model would definitely require additional 

information, such as repeated phenotypic measures, or (more 

demandingly) measures of methylation which are relevant to 

the phenotype of interest.

The classical twin design has been instrumental in demon-

strating the role of genetic and environmental influences on a 

wide range of phenotypes. The accuracy of variance compo-

nents obtained in twin studies depends on the validity of the 

many assumptions associated with this design.1 While the twin 

model can be extended in various ways2,67 to obtain more accu-

rate estimates, the fact remains that these estimates answer the 

first in a sequence of questions. Immediate follow-up questions 

are which GVs contribute to polygenic components, and what 

is the nature of gene–environment interplay. These follow-up 

questions are currently being addressed thanks to the present 

means to measure genetic and epigenetic variables in large 

volumes. It is clear from many recent articles that the classi-

cal twin design and the DMZ design remains important tools 

in these studies.3,23,27,33,49 In this connection, it is interesting to 

note that the twin design, which has been criticized for provid-

ing no information on gene–environment interplay,68 now is 

recognized to be an important tool in studying this interplay, 

at least insofar as it concerns epigenetics.

In conclusion, we have represented cytosine methylation 

as an epigenetic source of randomness in the genetic 

regression coefficient in the twin model. While we have 

emphasized methylation, we note that other epigenetic 

processes may moderate effects of DNA sequence varia-

tion (eg, DNA hydromethylation69 and gene expression 

quantitative trait locus7). The actual source of moderation, 

or parameter randomness, is immaterial to the conclusions 

of our simulation. However, as we currently lack a model 

to evaluate this randomness in the twin model, we cannot 

say how important it is in terms of effect size. Possibly, the 

incorporation of methylation data in twin modeling along the 

lines of Purcell36,37 may provide the means to quantify this 

randomness. It is interesting to note that such randomness, 

if appreciable, has implications for phenotypic modeling 

general. For instance, if two phenotypes are correlated due 

to pleiotropic genetic effects, and the effects are random 

(as defined in this paper), the phenotypic correlation will 

presumably also be random. The implications of epigenetic 

processes may therefore be of interest to other fields that focus 

on individual differences, such as psychology.
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