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Abstract 

 Constitutive defense mechanisms are critical to the understanding of defense mechanisms 

in conifers because they constitute the first barrier to attacks by insect pests. In Interior spruce, 

trees that are putatively resistant and susceptible to attacks by white pine weevil (Pissodes strobi) 

typically exhibit constitutive differences in traits such as resin duct size and number, bark 

thickness and terpene content. To improve our knowledge of their genetic basis, we compared 

globally the constitutive expression levels of 17825 genes between 20 putatively resistant and 20 

putatively susceptible interior spruce trees from the British Columbia tree improvement program. 

We identified 54 up-regulated and 137 down-regulated genes in resistant phenotypes, relative to 

susceptible phenotypes, with a maximum fold change of 2.24 and 3.91, respectively. We found a 

puzzling increase of resistance by down-regulated genes, as one would think that "procuring 

armaments" is the best defense. Also, although terpenes and phenolic compounds play an 

important role in conifer defense, we found few of these genes to be differentially expressed. We 

found 15 putative small heat shock proteins (sHSP) and several other stress related proteins to be 

down-regulated in resistant trees. Down-regulated putative sHSP belong to several sHSP classes 

and represented 58% of all tested putative sHSP. These proteins are well known to be involved 

in plant response to various kinds of abiotic stress; however, their role in constitutive resistance 

is not yet understood. The lack of correspondence between transcriptome profile clusters and 

phenotype classifications suggests that weevil resistance in spruce is a complex trait. 
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Introduction 

 The white pine weevil (Pissodes strobi) is a major pest of North American forests 

(Drouin & Langor 1991; Alfaro 1994; Hamid et al. 1995). The weevil primarily attacks Sitka 

spruce (Picea sitchensis), white spruce (P. glauca), and Engelmann spruce (P. engelmannii), but 

it can also attack several other pine and spruce species and even Douglas fir (Pseudotsuga 

menziesii). Adults lay eggs in the bark below the terminal bud cluster, and larva feed on the 

terminal leader. Such attacks can lead to leader death and consequential stem deformation, which 

is an economic cost to the forest industry (Alfaro 1994). Knowledge of the genetic mechanisms 

of weevil resistance in spruce would aid in developing marker assisted breeding strategies for 

spruce, and add to our knowledge about the diversity of resistance mechanisms in the plant 

kingdom.  

 In conifers as in other plants, resistance to insect pests involves both constitutive (pre-

existing) and induced defenses. Constitutive defense mechanisms are both mechanical (resin 

ducts, parenchyma cells and sclerenchyma) and chemical (oxalate crystals, and accumulation of 

toxic or repellant molecules) (Hall et al. 2011). Induced defenses form a second line of defense, 

operating during or after pest attack. They are generally more specific in their action, and include 

increases of resin flow and production of repellant or toxic chemicals, or even de novo defenses 

(formation of traumatic resin ducts, callus formation, synthesis of new chemicals that are 

possibly specific to a given pest). Most workers regard induced defensive mechanisms to be the 

most important component of insect defense, however constitutive resistance is less liable and 

easier to study and quantify in the context of quantitative genomics. 



 With regard to white spruce, several studies have identified constitutive features of 

resistance. Resistant trees possess a thinner bark, with a higher density of outer resin ducts and 

larger inner resin ducts (Tomlin & Borden 1994; Tomlin & Borden 1997b; Alfaro et al. 2004). In 

interior spruce (Picea glauca-engelmannii complex), resistance is positively correlated with tree 

growth (both height and trunk diameter), although weevils prefer to oviposit in longer leader 

shoots (Kiss & Yanchuk 1991; King et al. 1997). Gerson & Kelsey (2002) analyzed piperidine 

alkaloids contents of resistant and susceptible families of Sitka spruce, but they did not find any 

correlation with resistance to weevil ovipositing. With regard to terpenoids, Nault et al (1999) 

showed profiles to be good indicators of resistance in white spruce and Engelmann spruce. In 

Sitka spruce, resistant trees can show either a lower or a higher content of foliar terpenoids than 

susceptible trees, suggesting they can use either repellency strategy (the tree try to repel the 

insects) or stealth strategy (the tree try to be less attractive to the insects; Tomlin et al. 1997). 

However, higher levels of a diterpene (dehydroabietic acid) and two monoterpenes ((+)-3-carene 

and terpinolene) are associated with resistance in sitka spruce (Robert et al. 2010). Following this 

study, Hall et al. (2011) showed that the (+)-3-carene is produced by three different (+)-3-carene 

synthase genes. One was specific to resistant trees (PsTPS-3car2), one was specific to 

susceptible trees (PsTPS-3car3) and one is expressed in both phenotypes (PsTPS-3car1). They 

concluded that (+)-3-carene are explained by the variation in gene copy number, in gene 

sequence, in protein expression levels and in enzyme activity levels.  

 The development of 'omics' approaches and the development of several cDNA libraries 

within the Arborea I, II and Treenomix I, II spruce genome projects 

(http://www.arborea.ulaval.ca/; http://www.treenomix.ca; Pavy et al. 2005; Ralph, Yueh, et al. 

2006; Ralph et al. 2008) opened insights into the nature of both constitutive and induced defense 



mechanisms in spruce. To date, most published studies have focused on induced defenses 

(Ralph, Yueh, et al. 2006; Lippert et al. 2007; Lippert et al. 2009; Zulak et al. 2009; Robert et al. 

2010; Hall et al. 2011). These studies compare the biological response to various types of 

induction (methyl jasmonate and chitosan elicitation; white pine weevil and western spruce 

budworm herbivory; mechanical wounding) at the transcriptome, proteome and/or metabolome 

levels. However, induced and constitutive defenses are complementary and distinct defense 

mechanisms. Induced defenses take place when constitutive defenses have been defeated by an 

insect attack. Their primary function is to reinforce the constitutive defense mechanisms and add 

new barriers against the insect attack. Consequently, we might expect induced and constitutive 

defenses to have a different genetic basis. The purpose of this study was to investigate these 

differences. 

 The comparison of resistant and susceptible trees at the global transcriptome level has not 

yet been conducted, and such a comparison can provide fundamental and perhaps unexpected 

findings about the basis of insect resistance in conifers. Here we present a comparative study of 

gene expression in interior spruce (Picea glauca-engelmannii complex) aimed to identify 

candidate genes involved in constitutive defense against white pine weevil. We used a set of 180 

trees previously ranked for resistance to this weevil by breeders in the British Columbia Ministry 

of Forests. Using a 17825 member cDNA microarray, we compare gene expression levels 

between the 20 most resistant trees and the 20 most susceptible trees.  Significantly upregulated 

and downregulated genes will identify a suite of genes involved in constitutive weevil resistance. 

Particular attention will be given to the putative small heat shock proteins (sHSP) that evidently 

play an important role in constitutive defense.  



Materials and methods 

Selection and sampling 

 As part of the British Columbia (BC) interior spruce tree breeding program 

(Experimental Project EP 670), 180 trees were selected in wild stands across the Prince George 

region of central BC (Figure 1). The parent tree selection criteria was largely height superiority, 

stem form, branch size and crown shape. Their ages varied from 100 to 200 years. Open-

pollinated seeds were collected from each wild tree and test seedlings for each parent tree were 

grown in nursery beds near Prince George. Progeny tests of all families were established in 1972 

at Aleza Lake, near Prince George, and in 1973 at three other sites: the Prince George Tree 

Improvement Station (PGTIS), Quesnel, and Barbie Lake. In the mid-1980s, the PGTIS and 

Aleza Lake sites began to suffer severe and repeated attacks of white pine weevils. In 1988, 

presence or absence of weevil damage was recorded for all trees on both sites. Kiss and Yanchuk 

(1991) reported that family damage was consistent between the two sites (r = .71) and had a 

moderately strong genetic basis (h²family = 0.77; h2
individual = 0.18). King et al. (1997) reported 

similar results in other BC interior spruce populations. Based on these results, it appears that 

parental resistant scores can be readily estimated from weevil damage on their progenies. In 

2003, all families on both sites were ranked according to the number of damaged trees and the 

observed damage was used to estimate resistance levels of the 180 parent trees. In this study, the 

20 least and 20 most damaged families were chosen as the resistant and susceptible families. 

 In addition to collecting open-pollinated seed from the 180 parent trees in the wild, 

scionwood (i.e. shoot tips) was collected from each tree and all trees were cloned by grafting and 

established in clone banks at Vernon, Barnes Creek (near Enderby, B.C.) and PGTIS. Samples 

used for genetic analysis in this study were collected from parent tree grafts at the Barnes Creek 



site. The use of cloned trees growing in the same location instead of wild trees located across a 

vast geographic area removes bias due to different environmental growth conditions. 

R�A extraction and microarray profiling 

 Bark samples were collected from lateral shoots of the trees the Barnes Creek clone bank. 

Total RNA was extracted following Kolosova et al. (2004). RNA quantity and quality were 

assessed by measuring spectral absorbance between 200 and 350 nm and by visual assessment on 

a 1% agarose gel. cDNA synthesis was completed for each sample independently using 

Superscript II reverse transcriptase (Invitrogen) with an oligo dT12–18 primer. cDNA samples 

were hybridized using 3DNA Array 350 Expression array detection kit (Genisphere) onto the 

Treenomix Spruce cDNA microarray (21.8K version) comprising 18725 unique elements. A 

balanced design with dye swaps was used to make direct comparison of gene expression levels 

of resistant and susceptible trees. Each resistant tree was randomly contrasted with a susceptible 

tree.  

Statistical analysis 

 Slides were scanned and spot intensity was quantified using ImaGene 6.0.1 software 

(BioDiscovery, Inc., El Segundo, CA, USA). To correct for background intensity, the lowest 

10% of median foreground intensities per subgrid was subtracted from the median foreground 

intensities. Data were then normalized slide by slide, by variance stabilizing normalization to 

compensate for nonlinearity of intensity distributions (Huber et al. 2002). A linear mixed effects 

model was fit to the data taking account of both resistance/susceptibility and dye effects. Fold 

change, P- and Q-values were computed for all genes. Genes were considered to have a 

significant differential expression level when their P-value is below 0.05 and their fold-change 

above 1.5.  



 Heat map and cluster analysis were performed on genes with P-value < 0.05 and fold 

change > 1.5. Individuals and genes were clustered with Pearson correlation index and Spearman 

correlation index, respectively. Dendograms were drawn using the ‘hclust’ function in R Script.  

 To identify major themes appearing among the differentially expressed genes, we used 

the software Blast2Go (Conesa et al. 2005; Götz et al. 2008) to test for statistical 

overrepresentation of Gene Ontology terms (GO terms) among genes up- and down-regulated. A 

more detailed functional categorization was performed using Blastx and tBlastx search vs. 

viridiplantae database on NCBI. We considered only results with a E-value lower than 10
-10

. 

Given the number of differently expressed putative small heat shock proteins, a particular 

emphasis has been given to this protein family. tBlastn searches using protein sequences of 

known sHSP of Arabidopsis thaliana and Oryza sativa (Scharf et al. 2001; Siddique et al. 2008; 

Sarkar et al. 2009) was performed over the whole microarray to identify putative members of the 

sHSP family. 61 representative sequences of the 16 known sHSP classes from Arabidopsis 

thaliana (Scharf et al. 2001; Siddique et al. 2008), Populus trichocarpa (Waters et al. 2008) and 

Oryza sativa (Sarkar et al. 2009) were added to this sequences data set. Sequences were first 

aligned using the online version of PROMALS3D (Pei et al. 2008) and then optimized manually. 

The evolutionary distances were computed using the Poisson correction method (Zuckerkandl & 

Pauling 1965). Phylogenetic relationships were inferred based on amino acid sequences using the 

Neighbor-Joining method to determine the exact class of each sequence. Only the conserved C-

terminal sequences have been considered (see additional file). The reliability of the inferred tree 

was tested by bootstrap analysis with 1000 replicates (Felsenstein 1985). 

 Raw data and normalized data are uploaded to the Gene Expression Omnibus with 

accession number GSE27476 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27476). 



Sequences for array clones are found in National Center for Biotechnology Information (NCBI) 

using the clone IDs given in Tables 2, 3 and Table S1 in Supplementary material. 

Results 

Resistance levels 

 The percentage of trees damaged by weevils was significantly higher among susceptible 

trees (68%) than among resistant trees (21%; p < 2.2e-16; Figure 2). No difference was found 

between susceptible and resistant trees neither in size nor in survival. Supplementary Table 1 

summarizes the observed damages. These results show that we have a valid comparison of 

phenotypic differences between two classes of trees that differ in resistance to the weevil. 

Gene expression profiles 

 Among the 18725 genes on our microarray chip, 2499 showed a P-value less than 0.05 

for significant differences of gene expression between the two classes of trees that differ in 

resistance (Table 1). The highest Q-value observed among these genes was 0.282 but only one 

gene showed a Q-value less than 0.05. Fold changes (FC) were low with the maximums FC of 

2.24 and 3.91 in up-regulated and down-regulated genes, respectively (Table 1 and Figure 3). 

Consequently, we considered gene expression to be significantly different if the P-value was less 

than 0.05 and FC was greater than 1.5. With such a rigorous criteria, we identified 54 genes as 

up-regulated, and 137 genes as down-regulated, in resistant trees compared to susceptible trees, 

for a total of 191 significant genes. 

 As a further verification of differential gene expression, we performed cluster analysis 

and heat map based on the 191 significant genes (Figure 4). The cluster analysis indicates two 



groups, however, they do not match the resistant/susceptible classification; cluster #1 contained 

11 susceptible trees, while cluster #2 contained 9 susceptible trees and 20 resistant trees. There is 

no evidence of a link between the resistance levels and the classification of susceptible trees in 

two distinct groups. The heat map (Figure 4) confirms the differences in gene expression profiles 

between the two clusters and suggests no difference between susceptible and resistant trees in 

cluster #2. Genes cluster in two main groups: (1) down-regulated genes and (2) up-regulated 

genes.  

 To find differences that might exist between resistant trees and susceptible trees of 

clusters #1 and #2 (Figure 4), we performed a complementary analysis. We fitted the data as 

previously described to a mixed linear model, but considered three groups of trees: group S1 = 

cluster #1 (S-157-162, S-154-135, S-163-166, S-160-176, S-164-163, S-165-65, S-162-111, S-

174-128, S-159-43, S-155-62, S-169-72), group S2 = susceptible individuals of cluster #2 (S-

170-107, S-176-133, S-161-60, S-156-103, S-158-131, S-167-95, S-173-117, S-179-105, S-166-

130, see figure 4) and group R = resistant individuals (of cluster #2). This approach is not 

compatible with our experimental design as this analysis consists of three groups and the 

experimental design was made to compare two groups. Hence, individuals are not properly 

balanced over dyes and groups. Moreover, this statistical approach is not adequate as we 

predefine groups according to their gene expression profiles prior to the statistical comparisons 

based on the gene expression profiles. So results should be taken with caution. Only 30 genes are 

significantly differently expressed (FC up to 3.52) between group R and group S2 according to 

the criteria P < 0.05 and FC > 1.5 but with a Q-value of 1 (Table 2). This tends to confirm the 

low levels of difference between these groups. By contrast, the observed differences between 



group S1 and group R are high with 274 up-regulated (FC up to 10.05) and 430 down-regulated 

genes (FC up to 3.40) in group S1. 

Functional characterization 

 Using Blast2Go, we tested the occurrence of overrepresented GO terms among the set of 

significant genes arising from the comparison of resistant and susceptible trees, compared to the 

entire microarray. Among the biological processes, only a few categories were overrepresented 

(Figure 5): "response to hydrogen peroxide", "response to heat" and "response to high light 

intensity", and several higher categories. All belong to the wider category "response to stimulus". 

Among cellular components, the only overrepresented category is "microtubule associated 

complex". Among molecular functions, the two lowest overrepresented categories are "Rho 

guanyl-nucleotide exchange factor" and "microtubule motor". Although the trees were not 

stimulated, the overrepresented GO terms suggest that differentially expressed genes are 

involved in stress or stimulus responses, but their molecular functions remain obscure.  

 To complete analysis of the GO terms, Blastx and tBlastx searches were preformed 

against Viridiplantae on NCBI to deduce the functions of these putative genes, using E-values 

less than 10
-10

. 106 clones gave no results or matched sequences with unknown functions. We 

did find 85 matches with annotations using either Blastx or tBlastx. Genes with significant blast 

results are presented in Table 3. Differentially expressed genes belong to various gene families 

with few apparent links, except for putatively stress related genes (including the putative small 

heat chock proteins, sHSP). Three genes were annotated as putative transcription factors and 

three genes are annotated as part of putative transposable elements, but their possible function 

here is unknown.  



 Of the 191 genes either up or down regulated between resistant and susceptible trees, we 

found very few differentially expressed genes to be putatively involved in phenylpropanoid and 

terpenoid metabolisms. Only four genes were putatively assigned to the terpenoid metabolism: 

one putative cytochrome P450 and two putative delta-selinene-like synthases that were down-

regulated and one putative zeatin O-glucosyltransferase that was up-regulated. Eight to nine 

genes were putatively directly related to Phenylpropanoid metabolism: a putative UDP-

glycosyltransferase, a putative laccase, two putative phenylcoumaran benzylic esther reductase, a 

putative zeatin O-glucosyltransferase, a putative caffeic acid O-methyltransferase, a putative 

Flavonol 4'-sulfotransferase and a putative cytochrome P450, and eventually the putative 

transcription factor (MYB16) that might be linked to phenylpropanoid or terpenoid metabolism 

(Bedon et al. 2007).  

Differential expression of small heat shock proteins (sHSP) and stress related 

proteins 

 Of the 26 putative small heat shock proteins (sHSP) printed on our microarray chips, 15 

were down-regulated in resistant trees. We compared their sequences with Arabidopsis thaliana, 

Populus trichocarpa and Zea mays sHSP sequences allowing class determination of the majority 

of these genes (Figure 6). The phylogeny is congruent with previous classifications of sHSP 

(Scharf et al. 2001; Siddique et al. 2008; Waters et al. 2008; Sarkar et al. 2009) with the 

exception of Os21.8 ER, which was previously characterized as a member of the endoplasmic 

reticulum group of sHSP but clustered here with Os 18.8 of the cytoplasmic class X. Most of 

these spruce sHSP sequences cluster within the classes of sHSP previously identified in 

Arabidopsis thaliana, Populus trichocarpa and Zea mays. Those that failed to cluster might 

belong to new sHSP classes.  



 As in other species, the most diverse class of putative sHSP in spruce is the 

nucleocytoplasmic class I, represented by 7 putative clones (WS0052_F03, WS00923_A06, 

WS0061_N21, WS0262_N22, IS0014_L07, WS0261_O21, WS00823_L11; figure 6). 

Nucleocytoplasmic classes II and III are represented by two putative clones (WS0266_N22 and 

WS00825_O14) and one putative clone (WS00815_E02), respectively. WS0058_F08 putatively 

belongs to the peroxisomal class and WS0063_C15 and WS00919_I02 both putatively belong to 

the endoplasmic reticulum class. WS0087_J23, WS0058_B04 and WS00925_H13 do not cluster 

within any classes of either reference species. They may belong to a new class, specific to 

conifers. Six clones are found within a clade consisting of mitochondrial (group I) and 

chloroplastic sHSP. IS0014_C09 and WS0263_F23 unambiguously cluster within the 

mitochondrial group I of sHSP. Similarly, WS0063_G17 and WS00924_D21 unambiguously 

cluster within chloroplastic sHSP. Since WS0064_K01 and WS0061_H08 are branched between 

mitochondrial group I and chloroplastic sHSP within the large clade consisting of both 

mitochondrial and chloroplastic sHSP, they cannot be assigned with high confidence to either 

class. WS0092_E18, WS00826_O04 and WS0054_N08 do not match any known class of sHSP. 

Nevertheless, they are putatively related to the cytosolic classes V, VI and VII, respectively, and 

are tentatively assigned to these groups of sHSP. WS00930_B15 cannot be assigned to any sHSP 

class because the clone sequence is too short even though tBlastn and tBlastx searches place it as 

a putative sHSP. 

 The down-regulated putative sHSP belong to several classes working in different cellular 

compartments: nucleocytoplasmic (9 putative sHSP of class I-II-III-VI), endoplasmic reticulum 

(2 putative sHSP), peroxisome (1 putative sHSP) and chloroplast (1 putative sHSP). Two of the 

down-regulated putative sHSP could not be assigned to a particular class and operate in an 



unknown cellular compartment and seem to belong to the new sHSP class. In addition to these 

putative sHSP, 14 putative stress related proteins of various gene families are differentially 

expressed (12 down-regulated and 2 up-regulated in resistant trees), including three putative 

Heat Shock Proteins and at least two putative universal stress proteins.  

Discussion 

Differences between resistant and susceptible trees 

 Our comparison gene expression for 18725 genes between 20 susceptible and 20 resistant 

trees found 54 up-regulated genes and 137 down-regulated genes in resistant trees, as compared 

to the susceptible trees. As presented in the introduction, several studies have shown that 

differences exist between resistant and susceptible phenotypes at the morphological, chemical 

and genetic levels Moreover, previous studies have shown several hundred genes are involved in 

induced defenses in both Sitka spruce and Norway spruce (Ralph, Yueh, et al. 2006; Lippert et 

al. 2009). Therefore, the number of differentially expressed genes (i.e. with FC higher than 1.5) 

was expected to be greater than 211 that found in this study (191 statistically significant).  

 Such a low number of differentially expressed genes suggest that differences between 

resistant and susceptible phenotypes are linked more to variation in gene sequences, and/or 

translation, and/or variation of catalytic efficiencies than to regulatory differences. Hall et al. 

(2011) showed that differences in (+)-3-carene levels can be explained by variation in: 1) the 

number of gene copies, 2) protein expression levels, 3) gene sequences and 4) catalytic 

efficiencies. Such differences can also be expected in other gene families and the observed 

differences of gene expression levels may not explain all of the observed phenotypic differences.  



 Another possible explanation for the low number of differentially expressed genes is that 

in conifers, several gene families are composed of a large number of closely related genes: 

terpenoid synthases (Martin et al. 2004; Keeling et al. 2008), cytochrome P450 monooxygenases 

(Hamberger & Bohlmann 2006), dirigent proteins (Ralph, Park, et al. 2006; Ralph et al. 2007), 

MYB transcription factors (Bedon et al. 2007; Bedon et al. 2010). Therefore, we can expect that 

some spots of the microarray hybridize with transcripts of two, or even several, similar genes. In 

these cases, the observed gene expression levels are the average of the respective gene 

expression levels (i.e. up-regulated genes cancel the effect of the down-regulated genes). The 

low number of differentially expressed genes can also be linked to the existence of disparate 

strategies of resistance (e.g. stealth or repellent). See part 4 of the discussion below.  

 Previous comparisons between resistant and susceptible trees have shown that resistant 

phenotypes in spruce are better "armed" to defend against weevils; however, these results are 

inconsistent. Tomlin and Borden (1994; 1997b) and Alfaro et al. (2004) found that resistant trees 

possessed more and larger resin ducts, while Tomlin et al. (1997) and Nault et al. (1999) reported 

no clear link between terpene profiles and resistance. Only one study suggested the existence of a 

stealth strategy (Tomlin et al. 1997). In the case that procuring "armaments" is the most common 

defense strategy, we might expect a majority of up-regulated genes in resistant phenotypes. 

However, most of the differentially expressed genes in this study were down-regulated (72%). 

This suggests that resistance could be linked more to a stealth strategy than to a repellent 

strategy. The silencing of certain genes may reduce the probability of detection and attack by 

weevils. Moreover, since resistance is useful only when weevils are present, the cost of a 

constant expression of genes involved in resistance might be higher than the associated benefit. 



 The comparison of resistant trees and the 11 susceptible trees of cluster #1 lead to a 

higher number of differentially expressed genes than the comparison of the 20 resistant and 20 

susceptible trees. It suggests that more genes might show differences in constitutive expression 

levels. However, we cannot link the classification of the trees in three groups to a classification 

of phenotypes. Because this statistical approach is not adequate, we will not talk more about 

these results and we just mention them as further analyses. 

Terpenoid and phenylpropanoid pathways: few genes were constitutively differently 

expressed in resistant spruces 

 Only three differentially expressed genes have been found across the terpenoid metabolic 

pathways. Only two putative Delta-selinene-like synthases are down-regulated in resistant trees. 

In grand fir, Delta-selinene synthase use farnesyl pyrophosphate as substrate to produce 34 

different sesquiterpene olefins (Steele et al. 1998). The down-regulated gene annotated as 

putative abscisic acid 8'-hydroxylase belongs to the wide super family of cytochrome P450. This 

enzyme degrades abscisic acid into 8'-hydroxyabscic acid (Nambara & Marion-Poll 2005). 

Abscisic acid is an important terpenoid phytohormone involved in many plant developmental 

processes and plant responses to environmental stress and pathogens (Seo & Koshiba 2002). In 

particular, abscisic acid regulates the opening of stomates and thus the loss of water in cells. Pei 

et al. (2000) showed abscisic acid also triggers an increase in cytosolic calcium in guard cells. In 

Pistia stratiotes, the Ca
2+

 channels play an important role in calcium oxalate crystals formation 

(Volk et al. 2004). We might hypothesize that the reduced catabolism of abscisic acid is linked to 

an increase in the production of the toxic calcium oxalate crystals. However, more research is 

needed to confirm this hypothesis.  



 There are seven differently expressed genes that can be putatively assigned to 

phenylpropanoid metabolism. First, a putative caffeic O-methyltransferase (COMT) is down-

regulated in resistant trees. This enzyme is known to be involved in methylation of precursors of 

both syringyl- and guaiacyl-lignin subunits in angiosperms (Do et al. 2007; Tu et al. 2010; 

Baucher et al. 2003; Vanholme et al. 2008). Several studies showed that down-regulation of 

COMT leads to syringyl/guaiacyl-lignin ratio change or event suppression of syringyl-lignin. 

COMT down-regulation also leads to the incorporation of 5'-hydroxy-guaiacyl units in lignin. 

However, syringyl-lignin does not exist in conifers and we found no studies that show an effect 

of COMT down-regulation on 5'-hydroxy-guaiacyl production in conifers. Because guaiacyl-

lignin is the dominant lignin type in conifers, a decrease of COMT expression level could be 

associated with a decrease of lignin synthesis.  

 The up-regulated putative laccase enzyme belongs to the wide super family of the 

multicopper oxidase (Nakamura & Go 2005). In plants, some laccase enzymes are involved in 

lignin biosynthesis, although they have a large spectrum of substrates and form a large family of 

genes. In loblolly pine, eight laccase genes have been described and two of them have been 

functionally characterized (Sato et al. 2001; Sato & Whetten 2006). Both enzymes were able to 

oxidize coniferyl alcohol and produce dimers of coniferyl alcohol, and as a consequence are 

involved in lignin biosynthesis. 

 Two other up-regulated genes in our constitutive samples are annotated as putative 

phenylcoumaran benzylic ether reductase. Phenylcoumaran benzylic ether reductases are 

involved in phenolic secondary metabolism and convert 8'5'-linked lignin dehydrodiconiferyl 

alcohol into isodihydrodehydrodiconiferyl alcohol by the reduction of benzylic ether 

functionality (Gang et al. 1999). A previous study showed that a phenylcoumaran benzylic ether 



reductase is involved in induced conifer defense following either mechanical wounding or weevil 

attack (Lippert et al. 2007).  

 The up-regulated gene annotated as putative UDP-glucosyltransferase plays an important 

role in lignin biosynthesis. After their biosynthesis, the monomers of lignin (i.e. p-coumaryl, 

coniferyl and sinapyl alcohols according to plant species) have to be translocated to the cell wall 

for the next oxidation step of lignin biosynthesis. The 4-O-β-D-glucosides of cinnamyl alcohols 

have been considered as the transport forms of coniferyl and sinapyl alcohols. A UDPG:coniferyl 

alcohol glucosyltransferase from Pinus strobes has been able to convert cinnamyl aldehydes as 

well as coniferyl and dihydroconiferyl alcohols into their corresponding O-β-D-glucosides in 

vitro (Steeves et al. 2001). However, because coniferyl and sinapyl alcohols might be able to 

freely diffuse through the plasma membrane, it has been suggested that these glucosides play no 

role in monolignol export for developmental lignin (Vanholme et al. 2008; Boija & Johansson 

2006). Another noteworthy gene is annotated as putative MYB16, a member of the family of 

transcription factors. MYB16 belongs to the R2R3-MYB family and was shown to accumulate 

transiently in response to wounding in white spruce (Bedon et al. 2010) 

 At least two genes are annotated within the flavonoid metabolism. First, an up-regulated 

gene annotated as a putative flavonoid 3'-monooxygenase which belongs to the Cytochrome 

P450 superfamily. This gene is involved in central flavonoid metabolism, the leading precursors 

of flavones, anthocyanins and proanthocyanidins pathways (Winkel-Shirley 2001). Anthocyanins 

can play various roles, including the resistance mechanisms towards insect pests (Steyn et al. 

2002). The second gene within the flavonoid metabolism is down-regulated and annotated as a 

putative flavonol 4'-sulfotransferase. Ralph et al. (2006) found that several genes of flavonoid 

metabolism, including a Flavonoid 3'-monooxygenase (=hydroxylase), are up-regulated after 



white pine weevil herbivory, mechanical wounding, or western spruce budworm (Choristoneura 

occidentalis, Lepidoptera) feeding.  

Many stress related proteins exist for weevil resistance 

 Our study shows that 15 of 26 putative sHSP and several other stress-related genes are 

down-regulated in resistant trees. sHSP belong to a large family of proteins. They are highly 

variable but they share a conserved α-crystallin domain of approximately 100 residues (Caspers 

et al. 1995; de Jong et al. 1998; Fu et al. 2006). sHSP are classified into at least eleven 

subfamilies localized in different cell compartments: cytosol, mitochondria, chloroplasts, 

endoplasmic reticulum, peroxisome (Helm et al. 1993; Vierling 1991b; Siddique et al. 2003; 

Waters et al. 1996; Scharf et al. 2001; Ma et al. 2006; Waters et al. 2008). The 15 down-

regulated putative sHSP belong to class I, class II, class III, chloroplastic endoplasmic reticulum 

or cannot be assigned with confidence to a known class. The role of sHSP has been widely 

studied in plants. They are involved in plant response to various kinds of stress such as heat, 

cold, drought, heavy metals, salinity, oxidative and osmotic stress (Vierling 1991a; Waters et al. 

1996; Wang et al. 2004; Sun & MacRae 2005; Haslbeck et al. 2005; Nakamoto & Vigh 2007). 

sHSP are also involved in normal development of plants, during embryo development, seed 

germination, somatic embryogenesis, pollen development and fruit maturation (Sun et al. 2002 

and references therein). sHSP usually play a protection role (Haslbeck et al. 2005; Nakamoto & 

Vigh 2007). They can form stable complexes with denaturated proteins to prevent its 

aggregation. sHSP also form soluble aggregates with substrate proteins, creating a transient 

reservoir of substrates. Release and refolding of both complexes and aggregates need the 

cooperation of ATP-dependent chaperone systems. sHSP also play a role in membrane quality 

control and are potential membrane stabilizing factors.  



 Several sHSP were previously shown to be involved in conifer defense. Lippert et al. 

(2007) showed that weevil feeding induces the over expression of seven sHSP at the protein 

level (up to six-fold induction) in Sitka spruce. They also showed that transcript and protein 

expression levels are not correlated as six of the seven sHSP corresponding transcripts are not 

up-regulated following weevil feeding. The two-fold up-regulation of the seventh sHSP 

transcript (class I) is comparable to the up-regulation of the associated protein. Nevertheless, 

they observed that all the seven sHSP transcripts are constitutively expressed to high levels in 

bark tissue. Such constitutive expression of sHSP has also been observed in Arabidopsis thaliana 

(Siddique et al. 2008) but the constitutive role of sHSP remains unknown. The results of Lippert 

et al. (2007) suggest that sHSP transcripts accumulate in transient stocks and that sHSP 

expression is post-transcriptionally controlled. Recent studies have shown that RNA-binding 

proteins can regulate the stability, translation or localization of mRNA (Babitzke et al. 2009; 

Glisovic et al. 2008; Hogan et al. 2008). sHSP activity is also regulated at the protein level by 

phosphorylation or oligomer reorganization. As a consequence, the expression levels of sHSP 

transcripts do not necessarily correlate with the sHSP expression at the protein level. sHSP may 

not play a role in constitutive defense and, in fact, may be involved in induced defense, among 

other biological processes. However, the test of this hypothesis needs a time-series comparison 

of both the transcriptome and the proteome after induction (e.g. weevil feeding), based on both 

susceptible and resistant strains of spruce. Together with 15 putative sHSP, 12 putative stress 

related proteins are constitutively up-regulated in susceptible trees. Their potential role is yet to 

be discovered.  



Phenotype prediction and efficiency of the approach 

 As in previous studies based on morphological features or terpene contents (Tomlin et al. 

1997; Tomlin & Borden 1997a; Alfaro et al. 2004), our goal was to determine if the 

transcriptome profiling is able to predict resistance levels in Interior spruce. To determine 

whether the observed gene expression profiles corresponded to the observed phenotype (i.e. 

resistant/susceptible) we performed a hierarchical clustering (Figure 4). While the individuals 

clustered into two groupings, they did not match with the phenotype classification. One cluster 

contained 11 susceptible trees and a second cluster contained the remaining trees, i.e. both 

susceptible and resistant trees. The heat map clearly shows that 11 susceptible trees have a 

distinct profile of gene expressions compared to the other 29 trees. Therefore, it might be 

possible to identify certain susceptible phenotypes by analyzing the transcriptome profiles, but it 

will not be possible to identify resistant trees with a high degree of certainty using this approach. 

Four hypotheses could explain this pattern but at least three of them can be rejected. 

 First, the resistance levels might be inaccurately assessed for some progenies. The family 

size of all the examined trees varied between 14 and 175 trees (see additional table 1). Among 

the families used in the transcriptome comparison, 6 families (5 susceptible and 1 resistant) 

contained fewer than 80 individuals: S-165-65, S-161-60, S-166-130, S-170-107, S-179-105 and 

R-11-19 (respectively 42, 41, 30, 63, 14 and 42 trees). 4 of them are considered susceptible and 

clustered with resistant trees in the cluster #2. Consequently, the assessment of the resistance 

levels of these progenies might be questionable. However, this does not explain why susceptible 

progenies (with more than 80 individuals) S-176-133, S-156-103, S-158-131, S-167-95 and S-

173-117 cluster with resistant trees. However, the original assessment of damage was based on 

natural levels of weevil attack. Attack patterns are rarely uniform in the wild and all trees do not 



have the same probability of attack (He & Alfaro 1997). Therefore, some of the undamaged trees 

could have been “escapes” and never subject to attack, leading to some bias in the resistance 

levels assessment, particularly in the small progenies.  

 Second, the differences in the observed damages caused by weevils can be explained by 

environmental factors such as growth conditions. This hypothesis seems improbable because all 

the parent trees were collected within the same region (Prince Georges area) and the progenies 

were randomly mixed across several stands. All of them were grown in the same standard 

conditions. Moreover, as the trees used for gene expression profiling were grafted on the same 

rootstock, we do not expect high difference due to misadaptation to local soil conditions.  

 Thirdly, as the collected seeds were open-pollinated in the wild, we know only the 

mother and have no information about the fathers of the progenies used for resistance scoring. 

This may induce a bias if parents have very different levels of resistance. However, a previous 

study has shown a high family heritability (h² = 0.70) in a similar experiment design (King et al. 

1997) and crosses between susceptible and resistant trees would lead to intermediate levels of 

resistance (Alfaro et al. 2004). As a consequence, a bias induced by the uncertainty of fatherhood 

of the progenies seems improbable.  

 Finally, the resistance or susceptibility may be based on several different strategies, 

involving different sets of genes. In this case, our experimental design does not allow us to 

identify genes involved only in rare strategies. If resistance can be associated with e.g. ten 

different profiles of gene expression, we can expect only a few trees for each strategy to be 

present in our sampling. In such a case, the differences in gene expression profiles will be 



confused with individual variations because we did not classify the trees according to their 

strategy but according to their phenotype.  
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Table 1: Summary of T-test comparisons between resistant and susceptible trees (=reference).  

18725 analyzed genes Up-regulated Down-regulated 

Genes with P–value < 0.05  
1225 

(FDR = 28.2%) 

1274 

(FDR = 28.2%) 

Genes with fold change > 1.5  60 151 

Maximum fold change  2.24 3.91 

Significant genes  

(P < 0.05 and FC > 1.5)  
54 137 

 



Table 2: Summary of T-test comparisons between resistant and susceptible trees of clusters #1 and #2 

(=references). 

18725 analyzed genes 
Resistant (20) vs. Group S1 (11) Resistant (20) vs. Group S2 (9) 

Up-regulated Down-regulated Up-regulated Down-regulated 

Genes with P–value < 0.05 
1778 1709 305 337 

(FDR = 18,9%) (FDR = 18,9%) (FDR = 100%) (FDR = 100%) 

Genes with fold change > 1.5 326 482 79 56 

Maximum fold change 3,39 10,04 2,84 3,22 

Significant genes (P < 0.05 

and FC > 1.5) 
274 430 15 15 
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Figure legends 

Fig. 1: Parent trees origin within the Prince George area. The color scale (S-R) indicate the level of 

resistance of the trees, from highly susceptible to highly resistant, blue to red, respectively. Filled circles 

represent origin of the trees family used in the present microarray study. Open circle represent the 

origin of trees family not used in the microarray study, but used for the resistance ranking (map layers 

from MapPlace website 

http://www.empr.gov.bc.ca/MINING/GEOSCIENCE/MAPPLACE/Pages/default.aspx). 

 

Fig. 2: Percentage of damage trees among progenies. Progenies are ordered from the less damaged to 

the most damaged. Resistant and susceptible families are located on the left and on the right, 

respectively. White bars and black bars show selected families for the present study. 

 

Fig. 3: Smoothed densities color representation of volcano plot, showing the differential expression 

levels of 18725 genes between resistant and susceptible trees. Significant down-regulated and up-

regulated genes are shown in blue and red respectively. FC = Fold change, P = P-value. 

 

Fig. 4: Heat map of the 191 significantly differently expressed genes between susceptible and resistant 

trees to the white pine weevil. Blue and red squares at the top of the heat map indicate susceptible and 

resistant trees, respectively. Tree labels are indicated at the bottom as follow: the tree phenotype (R = 

resistant, S = susceptible), the family rank in progeny tests for resistance (1 = the most resistant; 179 = 

the most susceptible) and then the family number. 

 

Fig. 5: Significantly overrepresented GO terms of genes among significant up-regulated or down-

regulated genes between susceptible and resistant trees. Fisher’s exact tests with multiple testing 

corrections were performed using Blast2GO software. Only Go categories with FDR lower than 0.05 are 

shown.  

 

Fig. 6: Phylogenetic analysis of spruce sHSP. The tree was derived by Neighbor-joining method with 

bootstrap analysis (1000 replicates) from alignment of amino acid sequences of sHSP of rice, 

Arabidopsis and poplar. Bootstrap values higher than 50% are shown next to the branches. Phylogenetic 

analyses were conducted in MEGA4. EST clones ID of Picea are indicated in bold and underlined. Down-

regulated sHSP are indicated by a closed black circle.  
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