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2 CHAPTER 1: EXPONENTIAL POPULATION GROWTH

Model Presentation and Predictions

ELEMENTS OF POPULATION GROWTH

A population is a group of plants, animals, or other organisms, all of the same
species, that live together and reproduce. Just as an individual grows by gain-
ing weight, a population grows by gaining individuals. What controls popu-
lation growth? In this chapter, we will build a simple mathematical model
that predicts population size. In later chapters, we will flesh out this model by
including resource limitation (Chapter 2), age structure (Chapter 3), and
migration (Chapter 4). We will also introduce other players: pepulations of
competitors (Chapter 5) and predators (Chapter 6) that can control growth.
But for now, we will concentrate on a single population and its growth in a
simple environment.

The variable N will be used to indicate the size of the population. Because
population size changes with time, we will use the subscript ¢ to indicate the
point in time we are talking about. Thus, N} is the number of individuals in
the population at time t. By convention, we use ¢t = 0 to indicate the starting
point. For example, suppose we census a population of tarantulas and count
500 spiders at the beginning of our study. We revisit the population in one vear
and count 800 spiders. Thus, Ny = 500 and N7 = 800.

The units of ¢, in contrast to their numerical values, depend on the organ-
ism we are studying. For rapidly growing populations of bacteria or proto-
zoa, t might conveniently be measured in minutes. For long-lived sea turtles
or bristlecone pines, t would be measured in years or decades. Whatever
units we use, we are interested in predicting the future population size (Ny,1)
based on its current size (INy).

The biological details of population growth vary tremendouslv among dif-
~ ferent species, and even among different populations within the same
species. The factors that cause a tarantula population to increase from 500 to
800 spiders will be very different from the factors that cause an endangered
condor population to decrease from 10 to 8 birds. Fortunately, all changes in
population size can be classified into just four categories. Populations in-
crease because of births and decrease because of deaths. Population size also
changes if individuals move between sites. Populations increase when new
individuals arrive (immigration) and decrease when resident individuals
depart (emigration). :

These four factors operate at different spatial scales. Births and deaths
depend on current population size, as we will explain in a moment. To under-
stand births and deaths, we need to study only the target population. Bv con-
trast, emigration and immigration depend on the movement of individuals. If
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we want to describe these processes, we must keep track of not just one, but
several interconnected populations.

Any combination of the four factors will change population size. For our
tarantula example, the initial population of 500 spiders might have produced
100 new spiderlings during the year and lost 100 adult spiders to death, with
no movement of individuals. Alternatively, there might have been 50 births
and 50 deaths, with 300 residents leaving (emigration) and 600 spiders arriv-
ing from other populations (immigration). Either scenario leads to an increase
of 300 spiders.

These four factors can be incorporated into a mathematical expression for
population growth. In this expression, B represents the number of births, D is
the number of deaths, I is the number of new immigrants entering the popu-
lation, and E is the number of emigrants leaving the population between time
tand t +1:

N1 =Ny +B-D+I-E Expression 1.1
Expression 1.1 says that population size in the next time period (N}.1) equals
the current population size (N;) plus births (B) and immigrants (I), minus
deaths {D) and emigrants (E). We are interested in the change in population
size (AN), which is simply the difference in population size between last time
and this time. We get this by subtracting N; from both sides of Expression 1.1:

Niy1—-Niy=Ni=Ny+B-D+I1-E Expression 1.2

AN=B-D+I~E Expression 1.3

To simplify things, we will assume that our population is closed; in other
words, there is no movement of individuals between population sites. This
assumption is often not true in nature, but it is mathematically convenient
and it allows us to focus on the details of local population growth. In Chapter
1, we will examine some models that allow for movement of individuals
between patches. If the population is closed, both I and E equal zero, and we
do not need to consider them further:

AN=B-D

We will also assume that population growth is continuous. This means that
the time step in Expression 1.1 is infinitely small. As a consequence, popu-
lation growth can be described by a smooth curve. This assumption allows
us to model population growth rate (IN/dt) with a continuous differential
equation (see Appendix). Thus, population growth is described as the
change in population size (dN) that occurs during a very small interval of
time (d1):

Expression 1.4
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%Iti =B-D Expression 1.5

Now we will focus on B and D. Because this is a continuous differential equa-
tion, B and D now represent respectively the birth and death rates, the num-
ber of births and deaths during a very short time interval. What factors con-
trol birth and death rates? The birth rate will certainly depend on population
size. For example, a population of 1000 warblers will produce many more
eggs over a short time interval than a population of only 25 birds. If each
individual produces the same number of offspring during that time interval,
the birth rate (B) in the population will be directly proportional to popula-
tion size. Let b (lowercase!) denote the instantaneous birth rate. The units of b
are number of births per individual per unit time [births/ (individual « time)].
Because of these units, note that b is a rate that is measured per capita, or per
individual. Over a short time interval, the number of births in the population
is the product of the instantaneous birth rate and the population size:

B=bN Expression 1.6

Similarly, we can define an instantaneous death rate d, with units being num-
ber of deaths per individual per unit time [deaths/(individual « time)]. Of
course, an individual either dies or it doesn't, but this rate is measured for a
continuously growing population over a short time interval. Again, the prod-
uct of the instantaneous death rate and the population size gives the popula-
tion death rate:*

D=dN Expression 1.7

These simple functions will not always apply in the real world. In some cases,
the birth rate may not depend on the current population size. For example, in
some plant populations, seeds remain dormant in the soil for many years in a
seed bank. Consequently, the number of emergent seedlings (births) may
reflect the structure of the plant population many. years ago. A model for such
a population would include a time lag because the current growth rate actu-
ally depends on population size at a much earlier time.

Expressions 1.6 and 1.7 also imply that b and d are constant. No matter
how large the population gets, individuals have the same per capita birth and
death rates! But in the real world, birth and death rates may be affected by
crowding;: the larger the population, the lower the per capita birth rate and

*Note that dN in the numerator of the expression for continuous population growth (N /dt) is
not the same as dN in Expression 1.7. In Expression 1.7, dN is the product of the instantaneous
death rate (d) and the current population size (N).

:
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the higher the per capita death rate. We will explore this sort of density-
dependent modei in Chapter 2. For now, we will develop our model assum-
ing a constant per capita birth rate (b) and a constant per capita death rate (d).
Substituting Expressions 1.6 and 1.7 into Expression 1.5 and rearranging the
terms gives us:

aN

===(b-d)N

7t ‘Expression 1.8

Let b — d equal the constant r, the instantaneous rate of increase. Sometimes r
is called the intrinsic rate of increase, or the Malthusian parameter after the
Reverend Thomas Robert Malthus (1766-1834). In his famous “Essay on the
Principle of Population” (1798), Malthus argued that food supply could never
keep pace with human population growth, and that human suffering and
misery were an inevitable consequence.

The value of r determines whether a population increases exponentially (r
> (), remains constant in size {r = 0), or declines to extinction (r < 0). The units
of r are individuals per individual per unit time [individuals/(individual .
time)]. Thus, r measures the per capita rate of population increase over a
short time interval. That rate is simply the difference between b and d, the
instantaneous birth and death rates. Because r is an instantaneous rate, we
can change its units by simple division. For example, because there are 24
hours in a day, an r of 24 individuals/(individual » day) is equivalent to an r
ot 1 individual/(individual » hour). Substituting r back into Expression 1.8,
we arrive at our first model of population growth:

_dHZ;l =rN Equation 1.1
Equation 1.1 is a simple model of exponential population growth. It says that
the population growth rate (dN/df) is proportional to r and that populations
only increase when the instantaneous birth rate (b) exceeds the instantaneous
death rate (d), so that r > 0. If r is positive, population growth continues
unchecked and is proportional to N: the larger the population, the faster its
rate of increase.

When will our model population not grow? A population will neither
increase nor decrease when the population growth rate equals zero (dN/dt =
0). For Equation 1.1, there are only two cases when this is true. The first is
when N = 0. Because of migration, population growth in nature will not nec-
essarily stop when the population reaches zero. But in our simple model
immigration is not allowed, so the population will stop growing if it ever hits
the “floor” of zero individuals. The population will also stop growing if r
should equal zerc. In other words, if the per capita birth and death rates are
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exactly balanced, the population will neither increase nor decrease in size. In
all other cases, the population will either increase exponentially (r > 0) or
decline to extinction (r < 0).

PROJECTING POPULATION SIZE

Equation 1.1 is written as a differential equation. It tells us the population
growth rate, but not the population size. However, if Equation 1.1 is inte-
grated (following the rules of calculus; see Appendix), the result can be used
to project, or predict, population size:

N, =Nge" Equation 1.2

Ny is the initial population size, N; is the population size at time ¢, and e is a
constant, the base of the natural logarithm (e = 2.718). Knowing the starting
population size and the intrinsic rate of increase, we can use Equation 1.2 to
forecast population size at some later time. Equation 1.2 is similar to the for-
mula used by banks to calculate compound interest on a savings account.

Figure 1.1a illustrates some population trajectories that were calculated
from Equation 1.2 for five different values of r. In Figure 1.1b, these same data
are shown on a semilogarithmic plot, in which the y axis is the natural loga-
rithm (base e) of population size. This transformation converts an exponential
growth curve to a straight line. The slope of this line is .

These graphs show that when r > 0, populations increase exponentially,
and that the larger the value of r, the faster the rate of increase. When r <0,
populations decline exponentially. Mathematically, such populations never
truly reach zero, but when the population reaches a projected size of less than
one individual, extinction has occurred (by definition).

CALCULATING DOUBLING TIME

Orne important feature of a population (or a savings account) that is growing
exponentially is a constant doubling time. In other words, no matter how
large or small the population, it will always double in size after a fixed time
period. We can derive an equation for this doubling time, {3ouple, by noting
that, if the population has doubled in size, it is twice as large as the initial
population size: '
N; double = 2Ng Expression 1.9
Substituting back into Equation 1.2 gives an expression in terms of initial
population size:

2Ny = Noe’tdoub!e Expression 1.10
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Figure 1.1 (a) Trajectories of exponential population growth, calculated from a start-
ing population size of 100 individuals. The estimated r of -0.003034 [individuals/
lindividual « year)] corresponds to the projection for the grizzly bear (Ursus arctos
“orribilisy population of Yellowstone National Park (see Figure 1.6). (b) Exponential
srowth curves plotted on a semilogarithmic graph. The same data are used as in (a),
but the y axis (population size) shows the natural logarithm (base ¢) of population
size. In this type of graph, an exponential curve becomes a straight line; the slope of
that line is r, the intrinsic rate of increase.
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Table 1.1 Estimates of r and doubling times for different organisms.

Species Commen r_[ing:li‘viduals / D_oubling
name (individuai = day)] time
T phage Virus 300.0 7 7 3.3 minutes
Escherichia coli Bacterium - 587 17 minutes
Paramecium caudatum Protozoan 1.59 10.5 hours
Hydra Hydra 0.34 2 days
Tribolium castaneum Flour beetle 0.101 6.9 days
Rattus norvegicus Brown rat 0.0148 46.8 days
Bos taurus Domestic cow 0001 - 1.9 years
Avicennia marind Mangrove 0.00055 3.5 years
Nothofagus fusca Southern beech 0.000075 25.3 years

From Fenchel (1974).

Dividing through by Ny eliminates it from both sides of the equation:

2 = ¢'*double Expression 1.11

laking the natural logarithm of both sides gives:
In(2) =t goubte Expression 1.12

lixpression 1.12 can be rearranged to solve for doubling time:

In(2)

p Equation 1.3

fdouble =

Thus the larger r is, the shorter the doubling time. Table 1.1 gives some esti-
mated values of r (with their corresponding doubling times) for different
species of plants and animals. Among species, r varies considerably, and
much of this variation is related to body size: small-bodied organisms grow
faster and have larger rates of population increase than large-bodied organ-
isms. For example, bacteria and protozoa can reproduce by asexual fissicn
every few minutes and have high population growth rates. Larger organisms,
such as primates, have delayed reproduction and long generation times,
which lead to low values of r. Corresponding doubling times range from
minutes for viruses to decades for beech trees.

Note, however, that even “slow-growing” populations eventually will
reach astronomical sizes if they increase exponentially. Table 1.2 projects the
future population size for a hypothetical herd of 50 Vermont cows [ = 0.365

MODEL ASSUMPTIONS 9

Table 1.2 Exponential growth of a herd of 50 cattle, with » = 0.365 cows/(cow = year).

Year Herd size
0 50.0

1 72.0

2 103.8

3 1495

4 2153

5 310.1
10 1923.7
50 42x%10°
100 3.6 x 1017
150 3.0x10%
200 2.5x10%

Population sizes calculated from Equation 1.2.

cows/(cow » year)]. After 150 vears of exponential growth, the model pre-
dicts a herd of 3 x 10% cattle, the weight of which would exceed that of the
planet earth!

Model Assumptions

What are the assumptions of Equation 1.17 In other words, what is the under-
Iving biology of a population that is growing exponentially? This is a critical
question that must be asked for any mathematical model we construct. The
predictions of a mathematical model depend on its underlyving assumptions. If
certain assumptions are violated, or changed, the predictions of the model will
aiso change. Other assumptions may be less critical to the predictions of the
model; the model is robust to violations of these assumptions. We make the
following assumptions for a population growing according to Equation 1.1:

v No I or E. The population is “closed;” changes in population size depend
only on local births and deaths. We made this simplifying assumption
in Expression 1.4, so that we could model the growth of a single popu-
lation without having to keep track of organisms moving between pop-
ulations. In Chapter 4, we will relax this assumption and build some
simple models in which there is migration between populations.
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v Constant b and d. If a population is going to grow with constant birth
and death rates, an unlimited supply of space, food and other resources
must be available. Otherwise, the birth rate will decrease and/or the
death rate will increase as resources are depleted. Constant birth and
death rates also imply that b and d do not change randomly through
time. Later in this chapter, we will incorporate variable birth and death
rates in the model to see how the predictions are affected.

v No genetic structure. Equation 1.1 implies that all the individuals in the
population have the same birth and death rates, so there cannot be any
underlying genetic variation in the population for these traits. If there is
genetic variation, the genetic structure of the population must be con-
stant through time. In this case, r represents an average of the instanta-
neous rate of increase for the different genotypes in the population.

v No age or size structure. Similarly, there are no differences in b and d
among individuals due to their age or body size. Thus, we are model-
ing a sexless, parthenogenetic population in which individuals are
immediately reproductive when they are born. A growing population of
bacteria or protozoa most closely approximates this situation. In Chapter
3, we will relax this assumption and examine a model of exponential
growth in which individuals have different birth and death rates as they
age. If there are differences among ages, the population must have a sta-
ble age structure (see Chapter 3); in this case, r is an average calculated
across the different age classes.

v Continuous growth with no time lags. Because our model is written as a
simple differential equation, it assumes that individuals are being born
and dying continuously, and that the rate of increase changes instantly
as a function of current population size. Later in this chapter, we will
relax the assumption of continuous growth and examine a model with
discrete generations-In Chapter 2, we will explore models with time lags,
in which population growth depends not on current population size, but
on its size at some time in the past.

The most important assumption on this list is that of constant b and d,
which implies unlimited resources for population growth. Only if resources
are unlimited will a population continue to increase at an accelerating rate.
If the other assumptions are violated, populations may still increase expo-
nentially, although migration and time lags will complicate the picture.

But unlimited resources do not occur in nature, and we know that no real
population increases without bound. So, why does the exponential growth
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model form the cornerstone of population biology? Although no population
can increase forever without limit, all populations have the potential for expo-
nential increase. Indeed, this potential for exponential increase in population
size is one of the key factors that can be used to distinguish living from non-
living objects. The exponential model recognizes the multiplicative nature of
population growth and the positive feedback that gives populations the
potential to increase at an accelerating rate.

Exponential population growth is also a key feature of Charles Darwin’s
(1809-1882) theory of natural selection. Darwin read Malthus” writings and
recognized that the surplus of offspring resulting from exponential growth
would allow natural selection to operate and bring about evolutionary
change. Finally, although no population can increase forever, resources may
be temporarily unlimited so that populations go through phases of exponential
increase. Outbreaks of insect pests, invasions of “weedy” plant species, and
the plight of overcrowded human populations are compelling evidence of the
power of exponential population growth.

Model Variations

CONTINUOUS VERSUS DISCRETE POPULATION GROWTH

We will now explore some variations on our exponential growth model. For
many organisms, time does not really behave as a continuous variable. For
example, in seasonal environments, many insects and annual desert plants
reproduce only once, then die; the offspring that survive form the basis for
next year’s population. If birth and death rates are constant (as in the expo-
nential model), then the population will increase or decrease by the same fac-
tor each year. This population has non-overlapping generations and is mod-
eled with a discrete difference equation rather than a continuous differential
equation. Suppose the population increases (or decreases) each year by a con-
stant proportion ry, the discrete growth factor. Thus, if the population
increased annually by 36%, ry = 0.36. The population size next year would be:

Ny =Np+N; Expression 1.13
Combining terms gives:
Niyq = Ny(1+1y) Expression 1.14
Let 1 + 73 = 4, the finite rate of increase. Then:

N1 =AN; Expression 1.15
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A is always a positive number that measures the proportional change in pop-
ulation size from one year to the next. Thus, 4 is the ratic of the population
size during the next time period to the population size for the current time
period (N¢+1/Np). After two years, the population size will be:

N, =AN; = A(A,NO) = /121\]0 Expression 1.16

Notice that the “output” of Expression 1.15 (N¢,1) forms the “input” (Ny) for
the calculation in the next time step. The general solution to this recursion
equation after ¢ years is:

Ny =Ny Equation 1.4

Equation 1.4 is analogous to Equation 1.2, which we used to project popula-
tion size in the continuous model. What does population growth look like
with the discrete model? The answer depends on the precise timing of birth
and death events. Imagine that births are pulsed each spring and that deaths
occur continuously throughout the year. The population growth curve will
resemble a jagged saw blade, with a sharp vertical increase from births each
spring. followed by a gradual decrease from deaths during the rest of the
vear. In spite of this decrease, the overall curve will rise exponentially,
because annual births exceed annual deaths (Figure 1.2). The size of each
“tooth” in the growth curve will increase year after year because the same
fractional increase will add more individuals to a large population than to a
small one. For example, if A = 1.2, the population increases by 20% each year.
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Figure 1.2 Discrete population growth. In this example, births are pulsed at the
beginning of the year, and deaths occur continuously.
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If the population size is 100, it will increase by 20 in one year. But when the

popuiation size is 1000, it will increase by 200 in one vear.

Suppose our population reproduced twice a year, as is the case for some
insects. Now we would have a “tooth” on the graph every six months. If the
time step between reproductive periods becomes shorter and shorter, the teeth
on the graph will be closer and closer together. Finally, if the time step is infi-
nitelv small, the curve is no lenger jagged but is smooth, and we have arrived
again at the continuous model of exponential growth (Equation 1.2). The con-
tinuous model essentially “connects the dots” of time in the discrete model.
The continuous model is equivalent to a discrete difference equation with an
infinitely small time step. Thus, we can use the rules of calculus to solve for
the limit of (1 + ry) and show that:

el=2 Equation 1.5
We can express Equation 1.5 in equivalent logarithmic form as:
r=In(2) Equation 1.6

where In is the natural logarithm (base ). This relationship between r and 4
also establishes the following numerical equivalents:

r>0e4>1 Expression 1.17
r=0e4=1 Expression 1.18
r<0e0<i<l Expression 1.19

Because 4 is a ratio of population sizes, itis a dimensionless number with no
units. However, A is associated with the particular time step of the equation
and cannot be changed by a simple scaling. For example, a A of 1.2 measured
with a yearly time step is ot equivalent to a A of 0.1 measured with a month-
ly time step. A A of 1.2 yields a 20% annual increase, whereas a A of 0.1 yields
a 90% monthly decrease! If you need to change the time step for 4, first con-
vert A to r using Equation 1.6. Then scale r to the appropriate time units and
convert back to A with Equation 1.5. In this example, A = 1.2 is equivalent to
r = 0.18232 individuals/(individual « year). Dividing by 12 (months) gives
r = 0.01519 individuals/ (individual « month). From Equation 1.5, 4 = 1.0153,
with a monthly time step. As a check on this calculation, we can use Equation
1.4 to show that, after 12 months:
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N, =(1.0153)2 N, Expression 1.20

N, =1.2Ny Expression 1.21

This calculation demonstrates that 4 = 1.0153 for a monthly time step is
equivalent to A = 1.2 for a yearly time step.

In summary, the predictions of the discrete and continuous models of
exponential population growth are qualitatively similar to one another. In
Chapter 2, we will see that discrete models behave very differently when we
incorporate resource limitation.

FNVIRONMENTAL STOCHASTICITY

Fuation 1.2 is entirely deterministic. If we know Nj, r, and ¢, we can calcu-
late the predicted population size to the last decimal place. If we started over
with the same set of conditions, the population would grow to precisely the
same size. In such a deterministic model, the outcome is determined solely
by the inputs, and nothing is left to chance.

Deterministic models represent an idealized view of a simple, orderly
world. But the real world tends to be complex and uncertain. Think of public
transportation. Does any commuter ever expect their bus or train to arrive at
precisely the time indicated in the printed schedule? At least in American cities,
buses are delayed, trains break down, and subways travel at irregular speeds,
all of which introduce uncertainty (and anxiety) into the daily commute.

Could we incorporate all of the complex sources of variation into a public
transportation model? Not very easily. But we could measure, each day, the
arrival time of our bus. After many commuting days, we could calculate twvo
numbers that would help us to estimate the uncertainty. The first number is
the average or mean arrival time of the bus. If we use the variable x to indi-
cate the time the bus arrives, the mean is depicted as X. Approximately half of
all buses will arrive later than X and half will arrive earlier. The second num-
ber we could calculate is the variance in arrival times (62). The variance mea-
sures the variability or uncertainty associated with the mean. If the variance
is small, then we know that most days the bus will arrive within, say, two
minutes of the mean. But if the variance is large, the arrival time of the bus on
any given morning could be as much as 20 minutes earlier or 20 minutes later
than X. Obviously, our “commuting strategy” will be affected by both the
mean and the variance of x.

How can we incorporate this type of uncertainty into an exponential
growth model? Suppose that the instantaneous rate of increase is no longer a
simple constant, but instead changes unpredictably with time. Uncertainty
in r means there are good times and bad times for population growth. During
good times, the birth rate is much larger than the death rate, and the popula-
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tion can increase rapidly. During bad times, the difference between birth and
death rates is much smaller, or perhaps even negative, so that the population
increases slowly, or even decreases, for a short time period. Without specifv-
ing all of the biological causes of good and bad years, we can still develop a
stochastic model of population growth in a varying environment. Variability
associated with good and bad years for population growth is known as envi-
ronmental stochasticity.

Imagine that a population is growing exponentially with a mean r (F) and a
variance in r (o 7). We will use this model to predict the mean population size at
time f (N) and the variance in population size (Gi,r). Make sure you understand
the difference between these two averages and the two variances: the average and
variance in r are used to predict the average and variance in N.

The derivation of this model is beyond the scope of this primer, but the
results are straightforward. First, the average population size for a popula-
tion growing with environmental stochasticity is:

Ny = Noeﬂ Equation 1.7

This is no different from the deterministic model (Equation 1.2) except that
we use the average r to predict the average N;. However, like the “average
family” with 2.1 children, Nt may not be a very accurate descriptor of any
particular population. Figure 1.3 shows a computer simulation of a popula-
tion growing with environmental stochasticity. Although the population
achieves exponential increase in the long run, it fluctuates considerably from

one time period to the next. The variance in population size at time £ is given
by (May 1974a):

G%,t = Néezrt(ec’;t - 1) Equation 1.8

Other mathematical expressions for this variance are possible, depending on
precisely how the model is formulated.” Equation 1.8 tells us several things
about the variance of the population. First, population variance increascs
with time. Like stock-market projections or weather forecasts, the further

“Technically, we are replacing r in Equaiion 1.2 by r + ¢ 3W ¢, where W, is a “white noise” distri-
bution. This is a stochastic differential equation, which unfortunately does not have a
unique soluticn. [ have-followed May (1974a), who presents the Ito solution to this prob-
lem. Biologically, the Ito solution is appropriate because it arises as a diffusion approxima-
tion to a discrete model of geometric random growth, similar to Expression 1.15. Interesied
readers should consult May (1973, 1974a; and Roughgarden (1979) for more details.
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Figure 1.3 Exponential growth with environmental stochasticity. In this model,
the instantaneous rate of increase fluctuates randomly through time. Here Ny = 20;
r = 0.05; oZ = 0.0001.

into the future we try to predict population size, the more uncertain our esti-
mate. Consequently, the population growth curve resembles a funnel that
flares out with increasing time (Figure 1.3). Second, the variance of N, is pro-
portional to both the mean and variance of 7. Populations that are growing
rapidly, or have a variable r, fluctuate more than slow-growing populations
or those with a relatively constant r. Finally, if the variance of r is zero,
liquation 1.8 collapses to zero—there is no variance in Ny, so we have
returned to the deterministic model.

There is a limit to how much the population can vary in size and still per-
sist. If N fluctuates too violently, the population may “crash” to zero. This can
happen even if 7 is large enough to ensure rapid growth for the “average”
population. Extinction from environmental stochasticity will almost certainly
happen if the variance in r is greater than twice the average of r (May 1974a):

02527 Equation 1.9

In our deterministic model, the population increased exponentially as long
as r was greater than zero. With environmental stochasticity, the average pop-
ulation size also increases exponentially as a function of 7. However, if the
variance in 7 is too large, there is a measurable risk of population extinction.

DEMOGRAPHIC STOCHASTICITY

Environmental stochasticity is not the only source of variability that can affect
populations. Even if r is constant, populations may still fluctuate because of
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demographic stochasticity. Demographic stochasticity arises, in part, because
most organisms reproduce themselves as discrete units: an ostrich can lay 2
eggs or 3, but not 2.6! Some clonal plants and corals can reproduce by frag-
mentation and asexual budding, and in that sense, “pieces” of individuals
mav contribute to population increase (see Chapter 3). But for most organ-
isrr{s, population growth is an integer process.

If we were to follow a population over a short period of time, we would
see that births and deaths are not perfectly continuous, but instead occur
sequentially. Suppose that the birth rate is twice as large as the death rate,
This means that a birth would be twice as likely to occur in the sequence as a
death. In a perfectly deterministic world, the sequence of births and deaths
would look like this: ...BBDBBDBBDBBD.... But with demographic stochas-
ticity, we might see : ...BBBDDBDBBBBD.... By chance, we may hit a run of
four births in a row before seeing a death in the population. This demo-
graphic stochasticity is analogous to genetic drift, in which allele frequencies
change randomly in small populations.” In a model of demographic stochas-
ticity, the probability of a birth or a death depends on the relative magnitudes
of band d:

P(birth) = ﬁ Equation 1.10
P(death) = (bf ) Equation 1.11

Suppose that, for a chimpanzee population, b = 0.55 births/(individual «
vear) and that d = 0.50 deaths/(individual « year). This yields an r of 0.05
individuals/(individual » year), with a corresponding doubling time of
13.86 years (Equation 1.3). From Equations 1.10 and 1.11, the probability of
birth is [0.55/(0.55 + 0.50)] = 0.524, and the probability of death is

“As in the analysis of environmental stochasticity, the equations depend on the particuiar bio-
logical details of the model. One formulation for demographic stochasticity is that individuals
in a population live and die independently of one another for random durations. Lifetimes
have an exponential distribution with a mean of 1/(b + d). At the end of its life, an individual
either replicates itself with probability b/ (b + d) (Equation 1.10) or it dies with probability
d/(b + d) (Equation 1.11). The independence of individual births and deaths leads to Equation
115, which gives the overall probability of population extinction.

An alternative formulation for demographic stochasticity is that change in population size
is described by a matrix (Markov) transition model. In this case, the population persists with
N individuals for a time that has an exponential distribution with a mean of 1/N(b + d). At the
end of this time, the population either increases to N + 1 with probability b/(b + d) {Equation
1.10) or it decreases to N — 1 with probability d/(b + d) (Equation 1.11). Interested readers
should consuit Iosifescu and Tautu (1973) for more details.
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[0.50/(0.55 + 0.50)] = 0.476. Note that these probabilities must add to 1.0,
because the only “events” that can occur in this pepulation are births or
deaths. Because a birth is more likely than a death, the chimpanzee popu-
lation will, on average, increase. However, population size can no longer
be projected precisely; by chance, there could be a run of births or a run of
deaths in the population. Figure 1.4 shows a computer simulation of four
populations that each began with 20 individuals and grew with stochastic
births and deaths. Two of these populations actually declined below Ny,

even though r was greater than zero.

As in our analysis of environmental stochasticity, we are interested in the
average population size and its variance. The average population size at time

t is again given by:

N; = Nge™ Equation 1.12

35

Population size (N)
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Population births and deaths

Figure 1.4 Computer simulation of population growth with demographic stochas-
ticity. Each population track starts with an N of 20 individuals. b = 0.55 births / (indi-
vidual - year) and d = 0.50 deaths / (individual « year). Although the starting condi-
tions are identical, two of the populations actually dipped below the initial popula-
tion size by the end of the simulation. Note that the x axis is not absolute time, but
the number of sequential population events (births and deaths).
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which is the same as in the deterministic model. The equation for variance of
population size depends on whether the birth and death rates are equal or
not. If b and d are exactly equal, the population will not increase on average,
and the variance in population size at time ¢ is (Pielou 1969):

o3, =2Ngbt Equation 1.13

If b and d are not equal, use the following;:

, No(b+d)e"(e”— 1)

ok, = _ Equation 1.14

As in the model of environmental stochasticity, the variance in population
size increases with time, and there is a risk of extinction even for populations
with positive r. Demographic stochasticity is especially important at small
population sizes because it doesn’t take very many sequential deaths to drive
a small population to extinction. Consequently, the probability of extinction
depends not onlv on the relative sizes of b and d, but also on the initial pop-
ulation size. This probability of extinction is:

AR .
P(extinction) = (—b-) Equation 1.15

For the chimpanzee example, if there were 50 chimps initially, the chance of
extinction would be (0.50/0.55)*° = 0.009 = 0.9%. However, if the initial pop-
ulation size were only 10 chimps, the chance of extinction would be
{0.50/0.55) = 0.386 = 38.6%.

Equations 1.13 and 1.14 also show that demographic stochasticity depends
not only on the difference between b and 4, but on the absolute sizes of b and
d. Populations with high birth and death rates will be more variable than pop-
ulations with low rates. Thus, a population with b = 1.45 and d = 1.40 will fluc-
tuate more than a population with & = 0.55 and 4 = 0.50. In both populations, r
=0.05, but in the first, there is a much faster turnover of individuals, and thus
amuch greater chance for a run of several consecutive births or deaths.

To summarize, the average population size in stochastic models of expo-
nential growth is the same as in the deterministic model we originally
derived. In a stochastic world, populations can fluctuate because of changes
in the environment that affect the intrinsic rate of increase (environmental
stochasticity) and because of random birth and death sequences (demo-
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graphic stochasticity). For both types of variability, a population can fluctuate
so much that extinction is likely, even if the average intrinsic rate of increase
is positive. Demographic stochasticity is much more important as a cause of
extinction at small population sizes than at large.

Empirical Examples

PHEASANTS OF PROTECTION ISLAND

Humans have introduced many species into new environments, both inten-
tionally and accidentally. Some of these introductions have turned out to be
interesting ecological experiments. For example, in 1937, eight pheasants
(Phasianus colchicus torquatus) were introduced onto Protection Island off the
coast of Washington State (Lack 1967). The island had abundant food re-
sources and no foxes or other bird predators. The island was too far from the
mainland for pheasants to fly to it, so migration did not influence population
size. From 1937 to 1942, the population increased to almost 2000 birds (Figure
1.5a,b). The curve shows a jagged increase that is similar to our discrete
model of population growth. This increase reflects the fact that pheasant
chicks hatch in the spring, and mortality continues throughout the year.

The initial population of eight birds had increased to 30 by the beginning
of 1938. If we assume that resources were not limiting growth at this time, we
can estimate A as (30/8) = 3.75, with a corresponding r of In(3.75) = 1.3217
pheasants/(pheasant » year). We can use this estimate to predict population
size from the exponential growth model, and compare it to the actual size of
the pheasant population each year. The initial predictions of this model were
reasonably accurate, but after 1940, the model overestimated population size.
By 1942, the population had grown to 1898 birds, whereas the model predic-
tion was three times larger (5933 birds). This difference probably reflects
depletion of food resources on the island by the increasing pheasant popula-
tion. Unfortunately; this interesting ecological experiment ended abruptly
when the U.S. Army set up a training camp for World War II on the island,
and promptly ate the pheasants!

GRIZZLY BEARS OF YELLOWSTONE NATIONAL PARK

The grizzly bear (Ursus arctos horribilisy was once widespread throughout
most of North America. Today, its range in the lower 48 states consists of only
six fragmented populations in the northwest, some of which have fewer than
10 individuals. Yellowstone National Park supports one of the largest remain-
ing populations, which fluctuates markedly from year to year (Figure 1.5).
The grizzly bear population data obviously do not conform to a simple
exponential growth model, but they can be described by a more complex
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Figure 1.5 Growth of pheasant (Phasianis colchicus torquatus) popul.ation introduced
to Protection Island. The thin line shows the hypothetical exponential growth curve,
with 7 = 1.3217 individuals / (individual - year); the thick line shows the observed
popuiation size. For comparison, population sizes are plotted ona linear scale in (a)
and a logarithmic scale in (b). Note that the logarithmic scale is base 10, not base e.
(Data from Lack 1967.)

exponenfial model that incorporates environimental stochasticity (Dennis et
al. 1991). The estimate of r that.emerged from this model is —0.0Q3034
bears/(bear » year), suggesting that the population will decline slowly in the
long run. However, the variance for this estimate was relatively large, so we
should not be surprised to see periods of population increase. Based on this
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Figure 1.6 Population size of grizzly bears (Ursus arctos horribilis) in Yellowstone
National Park. These data were used to construct a model of exponential population
growth that incorporates environmental stochasticity. The estimate of r from this
model was —0.003034 individuals / (individual - year). (From Dennis et al. 1991.)

model, the prognosis for the Yellowstone grizzly bear population is not good.
I'he model forecasts that the population is certain to drop below 10 individ-
uals, at which point extinction is almost guaranteed. However, because r is
close to zero and its variance is large, the estimated time to extinction is 200
vears. Thus, the model suggests that it is unlikely the grizzly bear population
is in immediate danger of extinction, but that the population is likely to reach
a dangerously small size in the long run.

This projection assumes that background variability in b and d will con-
tinue in the future. Thus, the model does not Incorporate catastrophic events,
such as the 1988 Yellowstone fire, or future changes in human activity and
management strategy, such as the 1970-1971 closure of the park'garbage
dumps, an important food source for the bears. Because this model is one of
exponential population growth in a stochastic environment, it does not incor-
porate resource limitation, which might lead to different predictions (see
Chapter 2). Finally, the predictions of the model will change as additional
data from yearly censuses become available. Increasingly, conservation biol-
ogists and park managers are using quantitative population models to esti-
mate the risk of extinction. for endangered species. Many of these models are
based on the principles of exponential population growth that we have devel-
oped in this chapter.
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Problems

1.1.

1.2

1.3.

1.4

in 1993, when the first edition of this book was written, the world’s
human population was expected to double in size in approximately 50
vears. Assuming population growth is continuous, calculate r for the
human population. If the population size in 1993 was 5.4 billion, what
was the projected population size for the year 20007

The future is here! On August 2, 2000 the best estimate of the world pop-
ulation size was 6.087 billion—a bit higher than that projected by the
model in 1993. To find out the current estimate of the world population
size, visit this website maintained by the U.S. Census Bureau:

http:// www.census.gov/main/www /popclock.html

This website has a “real-time clock” that shows the estimated world and
U.S. population sizes. What is today’s date for you, reader, and how large
is the human population now?

You are studying a population of beetles of size 3000. During a one-
month period, you record 400 births and 150 deaths in this population. -
Estimate r and project the population size in 6 months.

For five consecutive days, you measure the size of a growiné population
of flatworms as 100, 158, 315, 398, and 794 individuals. Plot the logarithm
{(base e) of population size to estimate r.

A population of annual grasses increases in size by 12% every vear. What
is the approximate doubling time?

5. You are studying an endangered population of orchids, for which [ =

0.0021 births/(individual « year) and d = 0.0020 deaths/(individual «
vear). The current population size is 50 plants. A new shopping mall iy
planned that will eliminate part of the orchid habitat and reduce the pop-
ulation to 30 plants. Estimate the effect of the proposed development on
the probability of extinction.

* Advanced problem



