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Model Presentation and Predictions

In Chapter 1, we assumed (unrealistically) that resources for population
growth were unlimited. Consequently, the per capita birth and death rates, b
and d, remained constant. We did explore some models in which b and d fluc-
tuated through time (environmental stochasticity), but those fluctuations
were density-independent; in other words, birth and death rates did not
depend on the size of the population. In this chapter, we assume that
resources for growth and reproduction are limited. As a consequence, birth
and death rates depend on population size. To derive this more complex
logistic growth model, we will start with the familiar growth equation:

‘;—f} =('-d)N
but now we will modify " and d” so they are density-dependent and reflect

crowding,.

Expression 2.1

DENSITY DEPENDENCE

In the face of increased crowding, we expect the per capita birth rate to
decrease because less food and fewer resources are available for organisms to
use for reproduction. The simplest formula for a decreasing birth rate is a
straight line (see Figure 2.1):

b’=b-aN Expression 2.2

In this expression, N is population size, b’ is the per capita birth rate, and b
and a are constants. From Expression 2.2, the larger N is, the lower the birth
rate. On the other hand, if N is close to zero, the birth rate is close to b. The
constant b is the birth rate that would be achieved under ideal (uncrowded)
conditions, whereas b’ is the actual birth rate, which is reduced by crowding.
Thus, b has the same interpretation as in the original exponential growth
model: it is the instantaneous per capita birth rate when resources are unlim-
ited. The constant a measures the strength of density dependence. The larger
a is, the more sharply the birth rate drops with each individual added to the
population. If there is no density dependence, then a = 0, and the birth rate
equals b, regardless of population size. Thus, the exponential growth model is
a special case of the logistic model in which there are no crowding effects on
the birth rate (a2 = 0) or on the death rate (c = 0).

Using similar reasoning, we can modify the death rate to reflect density
dependence. In this case, we expect the death rate to increase as the popula-
tion grows:

d'=d+cN Expression 2.3
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Again, the constant d is ihe death rate when the population size is close to

zero, and the population is growing (almost) exponentially. The constant ¢

measures the increase in the death rate from density dependence.
Expressions 2.2 and 2.3 are the simplest mathematical descriptions of the

effects of crowding on birth and death rates. In real populations, the func-

tions mav be more complex. For example, b’ and d” may not decline in a linear
fashion; instead, there may be no change in b’ or d’ until a critical threshold
density is reached. Some animals can reproduce, hunt, care for their off-
»_-‘.prir‘.g_, or avoid predators more efficiently in groups than they can by them-
selves. For these populations, b” may actually increase and d’ decrease as the
population grows. This Allee effect (Allee et al. 1949) is usually important
when the population is small, and may generate a critical minimum popula-
tion size, below which extinction occurs (see Problem 2.3). But as the popu-
lation grows, we expect negative density effects to appear as resources are
depleted. :

Note that both birth and death rates are density-dependent in this model.
But it might be that only the death rate is affected by population size, and the
birth rate remains density-independent, or vice versa. Fortunately, the algebra
of this case works out exactly the same (see Problem 2.5). As long as either
the birth rate or the death rate shows a density-dependent effect, we arrive
at the logistic model.

Now we substitute Expressions 2.2 and 2.3 back into 2.1:

A = [(b-aN)-(d+cN)IN

After rearranging the terms:

Expression 2.4

A _[(b-d)-(a+cNIN Expression 2.5

Next, we multiply Expression 2.5 by [(b —d)/(b - d)]. This term equals 1.0, so
it does not change the results, but allows us to simplify further: .

dN _{(_b__d) |[(b-d)—(a+c}N]N Expression 2.6

dt | (b-d)

dN _ (b-d) (a+c) ]
W_[(b-nf)][‘—--—— N|N

b=d) " (b-d) Expression 2.7

Treating (b — d) as r, we have:
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Expression 2.8



CARRYING CAPACITY

Because 4, ¢, b, and d are all constants in Expression 2.8, we can define a new
constant K: :

(b-d)

K=(a+c)

Expression 2.9

The constant K is used for more than just mathematical convenience. It has a
ready biological interpretation as the carrying capacity of the environment. K
represents the maximum population size that can be supported; it encompasses
many potentially limiting rescurces, including the availability of space, food,
and shelter. In our model, these resources are depleted increménta]_ly as crowd-
ing increases. Because K represents maximum sustainable population size, its
units are numbers of individuals. Substituting K back into Expression 2.8 gives:

d
‘g‘ = f'N(l— %J Equation 2.1

Equation 2.1 is the logistic growth equation, which was introduced to ecolo-
gy in 1838 by P-F. Verhulst (1804-1849). It is the simplest equation describ-
ing population growth in a resource-limited environment, and it forms the
basis for many models in ecology.

The logistic growth equation looks like the equation for exponential
growth (rN) multiplied by an additional term in parentheses (1 — N/K). The
term in parentheses represents the unused portion of the carrying capacity.
As an analogy, think of the carrving capacity as a square frame that will hold
a limited number of flat tiles, which are the individuals. If the population
should ever exceed the carrying capacity, there would be more tiles than
could fit in the frame. The unused portion of the carrying capacity is the per-
centage of the area of the frame that is empty (Krebs 1985).

For example, suppose K = 100 and N = 7. The unused portion of the carry-
ing capacity is [1-(7/100)] = 0.93. The population is relatively uncroxxfdéd
and is growing at 93% of the growth rate of an exponentially iné:reasing pop-
ulation [rN(0.93)]. In contrast, if the population is close to K (N = 98), the
unused carrying capacity of the environment is small: [1 - (98/100)] = 0.02.
Consequently, the population grows very slowly, at 2% of the exponential
growth rate [rN{0.02)]. Finally, if the population should ever exceed carrying
capacity (N > K), the term in parentheses becomes negative, which méans
that the growth rate is less than zero, and the population declines towards
K. Thus, density-dependent birth and death rates provide an effective brake
on exponential population growth.
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Figure 2.1 Density-dependent birth and death rates in the logistic model. The graph
illustrates how the per capita rates of birth and death change as a function of crowd-
ing. The population reaches a stable equilibrium (N = K) at the intersection of the
curves, where birth and death rates are equal.

When will the population stop growing? As in the exponential model, the
rate of population growth (dN/dt) is zero when either r or N equals zero. But in
the logistic model, the population will also stop growing when N = K. This is
illustrated in Figure 2.1, which shows the density-dependent birth and death
functions in the same graph. The two curves intersect at the point N = K and
form a stable equilibrium. The equilibrium is stable because no matter what the
starting size of the population, it will move towards K. If N is less than K, we
are at a point to the left of the intersection of the birth and death curves. In this
region of the graph, the birth rate exceeds the death rate, so the population will
increase. If we are to the right of the intersection point, the death rate is higher
than the birth rate, and the population will decline (see Appendix).

As with the exponential growth model, we can use the rules of calculus to
integrate the growth equation and express population size as a function of
time:

_ K
" 1+[(K=Nog)/No|e™

Ni Equation 2.2

From Equation 2.2, the graph of N versus time for logistic growth is a char-
acteristic S-shaped curve (Figure 2.2). When the population is small, it
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Figure 2.2 Logistic growth curve. The graph of N versus time increases in a charac-
teristic S-shaped fashion when the population begins below carrying capacity.
Above carrying capacity, the curve drops rapidly to the equilibrium point. In this
example, K= 100, and the starting population size is 5 or 200.

increases rapidly, at a rate slightly less than that predicted by the exponen-
tial model. The population grows at its highest rate when N = K/2 (the steep-
est point on the curve), and then growth decreases as the population
approaches K (Figure 2.3a). This is in contrast to the exponential model, in
which the population growth rate increases linearly with population size
(Figure 2.3b). In the logistic model, if the population should begin above K,
Equation 2.1 takes on a negative value, and N will decline towards carrving
capacity.

Regardless of the initial number of individuals (Ny), a population growing
according to the logistic model will quickly reach a fixed carrying capacity,
which is determined solely by K. However, the time it takes to reach that
equilibrium is proportional to r; faster-growing populations reach K more
quickly.

Model Assumptions

Because the logistic model is derived from the exponential model, it shares
the assumptions of no time lags, migration, genetic variation, or age struc-
ture in the population. But resources are limited in the logistic model, so we
make two additional assumptions:

B 5 s T U TSP N 1 i

P

MODEL ASSUMPTIONS 31

(a)

an
dt

Population size (N)

(b)

N
lrt

Population size (N)

Figure 2.3 Population growth rate (dN/dt) as a function of population size.
{a) Logistic growth. (b) Exponential growth.

v Constant carrying capacity. In order to achieve the S-shaped logistic
growth curve, we must assume that K is a constant: resource availability
does not vary through time. Later in this chapter, we will relax this
assumption.

v Linear density dependence. The logistic model assumes that each indi-
vidual added to the population causes an incremental decrease in the °
per capita rate of population growth. This is illustrated in Figure 2.4a,
which shows the per capita population growth rate (1/N)(dN/dt) as a
function of population size. This per capita rate is at its maximum value

_of (b —d) = r when N is close to zero, then declines linearly to zero when
N reaches K. If N exceeds K, the per capita growth rate becomes nega-
tive. Although b and d are constants, the actual birth and death rates (b’
and d") now change as a function of population size (Expressions 2.2 and
2.3). In contrast, the corresponding graph for the exponential growth
model is a horizontal line because the per capita growth rate is indepen-
dent of population size (Figure 2.4b).
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Figure 2.4 Per capita growth rates (1/N)(dN/df) as a function of population size.
(a) Logistic growth. (b) Exponential growth.

Model Variations

TIME LAGS

The logistic growth model assumes that when another individual is added
to the population, the per capita growth rate decreases immediately. But in
many populations there may be time lags in the density-dependent r:esponse.
For example, if a population of gulls increases in size in the fall, density
dependence may not be expressed until the following spring, when females
lay eggs. In a tropical rain forest, density-dependent mortality of mahogany
trees (Swietenia mahogani) may occur in the seedling stage, but densit‘y-depet{—
dent reproduction may not occur until 50 years later, when the trees first
begin to flower. Individuals do not immediately adjust their growth and
reproduction when resources change, and these delays can affect population
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dvnamics. Seasonal availability of resources, growth responses of prey pop-
uiaﬁons, and age and size structure of consumer populations can introduce
important time lags in population growth.

How can time lags be incorporated into our medel? Suppose there is a
time lag of length t between the change in population size and its effect on
population growth rate. Consequently, the growth rate of the population at
time t (dN/dt) is controlled by its size at time { - 7 in the past (N,_;). Incorpo-
rating this time lag into the logistic growth equation gives:

N
%:rN[l— ;{t} Equation 2.3

The behavior of this delay differential equation depends on two factors: (1)
the length of the time lag 7, and (2) the “response time” of the population,
which is inversely proportional to r (May 1976). Populations with fast growth
rates have short response times (1/7).

The ratio of the time lag T to the response time (1/r), or 17, controls popula-
tion growth. If rtis “small” (0 < rt < 0.368), the population increases smooth-
Iv to carrying capacity (Figure 2.5a). If 7 is “medium” (0.368 < rt < 1.570), the
population first overshoots, then undershoots the carrying capacity; these
damped oscillations diminish with time until K is reached (Figure 2.5b). The
vxact numerical values for these trajectories are not important. What is impor-
tant is to understand how the behavior of the model changes as r7 is increased.

If rt is “large” (rt > 1.570) the population enters into a stable limit cycle,
periodically rising and falling about K, but never settling on a single equilib-
rium point (Figure 2.5¢). The carrying capacity is the midpoint between the
high and low points in the cycle. The cycle is stable because if the population
is perturbed, it will return to these characteristic oscillations. When rt is large,
the time lag is so much longer than the response time that the population
repeatedly overshoots and then undershoots K. The population resembles a
heating system with a faulty thermostat that constantly overheats and-then
overcools, never achieving an equilibrium temperature.

Cyclic populations are characterized by their amplitude and period (Figure
2.5¢). The amplitude is the difference between the maximum and the aver-
age population size. It is measured on the y axis of the graph of N vs. ¢, and its
units are number of individuais. The larger the amplitude, the greater the
population fluctuations. If the amplitude is toc large, the population may hit
the “floor” of zero and go extinct. The period is the amount of time it takes
for one complete population cycle to occur. It is measured on the x axis, in
units of time. The longer the period, the greater the amount of time between
population peaks.
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Figure 2.5 Logistic growth curves with a time lag. The behavior of the model
depends on rr, the product of the intrinsic rate of increase and the time lag. (a)
‘Small” rt behaves like the mode! with no time lag. (b) “Medium” rr generates
dampened oscillations and convergence on carrying capacity. (c) “Large” rt gener-
ates a stable limit cvcle and does not converge on the carrying capacity.

In a logistic model with a time lag, the amplitude of the cycle increases
with increasing values of r7. This makes intuitive sense—if the population is
growing very rapidly, or if the time lag is very long, the population will great-
Iv overshoot K before it begins a phase of decline.
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The period of the cycle is always about 41, regardless of the intrinsic rate of
increase. Thus, a population with a time lag of one year can be expected to
reach a peak density every four years. Why should the period of the cycle be
four times as long as the lag? When the population reaches K, it will continue
to increase for a length of time 1 before starting to decrease. The distance from
K to the population peak is about one-quarter of the cycle, so the length of
the entire cycle is approximately 4t. This result may explain the observation
that many populations of mammals in seasonal, high-latitude environments
cvcle with peaks every three or four vears (May 1976; see Chapter 6).

{JISCRETE POPULATION GROWTH

We will now explore a model in which population growth is discrete rather
than continuous. A discrete version of the logistic equation is:

N
Ny =Ny +73Ny (1“' Tt) Equation 2.4

This discrete growth logistic equation is analogous to the continuous model
(Equation 2.1) in the same way that Equation 1.4 was analogous to the orig-
inal exponential model (Equation 1.2). Note that the growth rate is the dis-
crete growth factor r,, described in Chapter 1.

A discrete population growth model has a built-in time lag of length 1.0.
The population size at one time step in the future (N,,;) depends on the cur-
rent population size (N,). In the last section, we saw that the product rt con-
trols the dynamics when a time lag is present. For the discrete model, the lag
i> of length 1.0, so the dynamics depend solely on r,.

If r,; is not large, the behavior of this discrete equation is similar to that of its
continuous cousin. At “small” r, (r4 < 2.000), the population approaches K with
damped oscillations (Figure 2.6a). At “less small” r, (2.000 < r; < 2.449), the pop-
ulation enters into a stable two-point limit cycle. This is similar to the continuous
model, except that the population rises and falls to sharp “points,” rather than
following a smooth curve. The points in the discrete model correspond to peaks
and valleys of the cycle (Figure 2.6b). Between an r, of 2.449 and an r, of 2.570,
the population grows with more complex limit cycles. For example, a four-point
limit cycle has two distinct peaks and two distinct valleys before it starts to
repeat. The number of points in the limit cycle increases geometrically (2, 4, 8,
16, 32, 64, etc.) as the value of 7, is increased in this interval (Figure 2.6c).

But if 7, is larger than 2.570, the limit cycles break down, and the popula-
tion grows in a complex, nonrepeating pattern known as chaos (Figure 2.6d).
Mathematical models of chaos are important in many areas of science, from
the description of turbulent flow to the prediction of major weather patterns,
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o Figure 2.6 The behavior of the discrete logistic growth curve is determined by the
size of ry. (a) “Small” 7; generates damped oscillations (r; = 1.9). (b) “Less small” r,
zenerates a stable two-point limit cycle (r; = 2.4). (c) “Medium” r; generates a more
complex four-point limit cycle (r; = 2.5). (d) “Large” r, generates a chaotic pattern of
fluctuations that appears random (r; = 2.8).

Population biologists were among the first to appreciate that simple discrete
vquations may generate complex patterns (May 1974b). What is interesting
about chaos is that seemingly random fluctuations in population size can
emerge from a model that is entirely deterministic. Indeed, the track of a
chaotic population may be so complex that it is difficult to distinguish from
the track of a stochastic population.

However, chaos does not mean stochastic, or random, change. The fluctu-
ations in a chaotic population have nothing to do with chance or random-
ness. Once the parameters of the model are specified (K, r;, and Ny), the same
erratic population track will be produced each time we run the model. The
source of these erratic fluctuations is the density-dependent feedback of the
logistic equation, combined with the built-in time lag of the discrete model. A
characteristic of a chaotic population is sensitivity to initial conditions. If we
alter the starting conditions, say, by changing the initial population size (N,),
the populations will diverge more and more as time goes on (Figure 2.7).

[n contrast, a truly stochastic population fluctuates because one or more
of its parameters (r, or K) changes with each time step. In a stochastic model,
if we alter the starting population slightly, but retain the same pattern of vari-
ation in r,; or K, the two population tracks will be slightly different, but they
will not diverge as in Figure 2.7. In the next section we explore stochastic
muodels in which the carrying capacity varies with time.

Population size (N)

Beginning N = 50~

20+ Beginnirig N = 51
0 1 ] | 1 1 1 i 1 I
RERRY SR VT SRR R S T T T
Time (1)

Figure 2.7 Divergence of population tracks with chaos. Both populations followed
the same logistic equation, but the starting N for one of the populations was 50 and
the other was 51. Note that, as more time passes, the two populations begin to
diverge from one another.
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RANDOM VARIATION IN CARRYING CAPACITY

In our analysis of environmental stochasticity (Chapter 1), we assumed that
resources were unlimited, but that r varied randomly with time. For the logis-
tic model, we will now assume that r is fixed, but that the carrying capacity
varies randomly with time. Random variation in K means that the maximum
population size that the environment can support changes unpredictably
with time. How does this variation in resources affect the behavior of the
logistic model? There are several mathematical approaches to the problem
(Mav 1973; Roughgarden 1979), none of which yields a simple answer.

When r varied randomly in our exponential model, we found that the
average population size was the same as in the deterministic model (Ni=
Nye”). So, you might reason that the average population size in the logistic
model should approximate the average carrying capacity (K). But this is not
the case. Instead, N will always be less than K. Why should this be so? When
a population is above K, it declines faster than a population that is increas-
ing from a corresponding level below K (see Problem 2.4). This asymmetry is
reflected in Figure 2.2, which shows that the population tracks above and
below carrying capacity are not mirror images of one another. If the carrving
capacity is described by its mean (K) and variance (67 ) , a rough approxima-
tion to the average population size is (May 1974a):

2

N=K- GTK Equation 2.5
Thus, the more variable the environment, the smaller the average population
size. The pattern of population fluctuations also depends on 7 (Levins 1969).
Populations with large r are very sensitive to changes in K, and they will tend
to track these fluctuations quite closely. Consequently, the average popula-
tion-size will be only slightly less than the average carrying capacity. In con-
trast, populations with small r are relatively sluggish and will not exhibit
large increases or decreases (Figure 2.8); N will be somewhat smaller than
for populations with large r.

PERIODIC VARIATION IN CARRYING CAPACITY

Instead of random fluctuations in carrving capacity, suppose K varies repeat-
edly, in a cyclic fashion. Cyclic fluctuations in carrying capacity probably
characterize many populations in seasonal temperate latitudes, and can be
described with a cosine function (May 1976):

K; =kq +kq[cos(2xt /)] Equation 2.6
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Figure 2.8 Logistic population growth with random variation in carrying capacity.
Note that the population with the larger growth rate (r = 0.50) tracks the fluctuations
in carrying capacity, whereas the population with the small growth rate (r = 0.10) is
less variable and does not respond as quickly to fluctuations in resources.

Here, K, is the carrying capacity at time t, k; is the mean carrying capacity, k,
s the amplitude of the cycle, and c is the length of the cycle. As f increases,
the cosine term in parentheses varies cyclically from -1 to 1. Thus, during a
single cycle of length ¢, the carrying capacity of the environment varies from
a minimum of ky—k; to a maximum of k; + k;.

How does this cyclic variation in carrying capacity affect population
growth? The length of the carrying capacity cycle functions as a kind of time
lag, so once again, the behavior of the model depends on rc. If rc is small
(<< 1.0), the population tends to “average” the fluctuations in the environ-
ment and persists at roughly:

N = Njkg —k? Equation 2.7

Thus, if rc is small, N is less than K, and the reduction is greater when the
amplitude of the cycle is large; both patterns are similar to the results for a
population in which K varies stochastically. If rc is large (>> 1.0), the popu-
lation tends to track the fluctuations in the environment:

Ny = kg +kjcos(2rt /) Equation 2.8

although at a value slightly less than the actual carrying capacity (Figure 2.9).
In conclusion, both stochastic and periodic variation in carrying capacity
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@) Empirical Examples
7 "\\/ Carrying !/" 3 i
A\ : SONG SPARROWS OF MANDARTE ISLAND
‘2; Mandarte Island is a rocky, 6-hectare island off the coast of British Columbia.
& _ The island is home to a population of song sparrows (Melospiza melodia) that
5 o has been studied for many decades (Smith et al. 1991). On average, only one
5 new female migrant joins this population each year, so most of the changes in
g population size are due to local births and deaths. Over the past 30 years, the
population has varied between 4 and 72 breeding females and between 9 and
~ 100 breeding males. The sparrow population of Mandarte Island does not
conform to a simple logistic growth model; population size is variable and
Time (t) there have been periods of increase followed by rapid declines (Figure 2.10).
Some of these, such as the crash in 1988, were caused by an unusually cold
(b) winter and an increased death rate. Other declines were not correlated with
iR 0N any obvious change in the environment.
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Figure 2.9 Logistic growth with periodic variation in the carrving capacitv. The car- = S0 -
rying capacity of the environment varies according to a cosine function. As with ;
random variation, the population with the large growth rate (r = 10) tends to track = 6oL
the variation (a), and the population with the small growth rate (r = 0.2) tends to 75
average it (b). The dashed line indicates K. (From May 1976.) = i
. ‘L |-
20 -
reduce populations, and the more variable the environment, the lower the E ol N | \ |
average population size. In a variable environment, populations with large r, 1960 1963 1975 1980 1985 1990
such as most insects, may be expected to track variation in carrying capacity, Year

whereas populations with small 7, such as large mammals, may be expected Figure 2,10 Population size of the song sparrow (Melospiza melodia) on Mandarte
to average the environmental variation and remain relatively constant. Island. (After Smith et al. 1991.)
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Figure 2.11 Density dependence in the Mandarte Island song sparrow (Melospiza
melodia) population. As the population becomes more crewded (a) the proportion of
nonterritorial “floater” males increases; (b) the number of surviving young pro-
duced per female decreases; (¢) juvenile survival decreases. (After Arcese and Smith
1988 and Smith et al. 1991.)
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Although this population is clearly buffeted by density-independent
changes, there is good evidence of underlying densitv dependence. Male
<ong sparrows defend territories that determine their breeding success, but
limited food resources and space prevent many males from ever establishing
serritories. These nonterritorial “floaters” are behaviorally submissive indi-
viduals. Their proportion increased in a density-dependent fashion as the
population became more crowded (Figure 2.11a). When the resident territory
holders were experimentally removed, floater males quickly took over their
torritories, so the total breeding population size remained relatively constant.

Density dependence is also seen in the number of surviving young pro-
duced per female (Figure 2.11b), and in the survival of juveniles (Figure 2.11c),
both of which decreased as the population size increased. Experimental stud-
ies confirmed that food limitation was the controlling factor: when food lev-
¢ls for sparrows were artificially enhanced, female reproductive output
increased fourfold (Arcese and Smith 1988). Thus, both territoriality and food
limitation generated density-dependent birth and death rates in song spar-
rows.

Nevertheless, although density dependence has the potential to control
population sizes, the risk of extinction for Mandarte Island sparrows proba-
blv comes from unpredictable environmental catastrophes and other densi-
tv-independent forces. Somewhat paradoxically, it is these density-indepen-
dent fluctuations that allow us to detect density dependence, because they
push the population above or below its equilibrium and reveal the underly-
ing dynamics of birth and death rates.

POPULATION DY NAMICS OF SUBTIDAL ASCIDIANS

Ascidians, or “sea squirts,” are filter-feeding invertebrates that live attached
to pier pilings and rock walls. These animals are important components of
-ubtidal “fouling” communities throughout the world. Ascidians are actual-
' primitive chordates that disperse with a sexually produced tadpole larva.
I'he perennial ascidian Ascidia mentula has been the subject of a long-term
study of population dynamics on vertical rock walls off the Swedish west
coast (Svane 1984).

Six populations were monitored continually for 12 vears with photographs
of permanent plots. At sheltered sites within a fjord, density was highest in
shallow plots; at exposed stations, density was highest in deep-water plots.
At all sites, populations fluctuated considerably (Figure 2.12), in contrast to
the predictions of the basic logistic model. Mortality was primarily due to
“bulldozing” by sca urchins and temperature fluctuations. These factors
seemed to operate in a density-independent fashion, because there was no
relationship between mortality rate and population size (Figure 2.13a). In
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Figure 2,12 Population density of ascidians (Ascidia mentula) at six subtidal sites off
the coast of Sweden. Population densities are greater in shallow water than in deep,

except at the exposed site. Note the use of a logarithmic scale for the y axis, which
diminishes the appearance of population fluctuations. (After Svane 1984.)

contrast, reproduction (as measured by larval recruitment) was density-
dependent and decreased at high densities. At low densities, there was evi-
dence of an Allee effect: recruitment actually increased with population den-
sity until a density of approximately 100 animals per square meter was
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Figure 2.13 (a) Densitv-independent mortality rates. The mortality rate of ascidians
Ascidia mentula) at the six population sites appears to be independent of population
size. (b) Density-dependent recruitment rates. The rate of recruitment of new juve-
niles into ascidian populations is density-dependent and is lower in more dense
populations. Note the appearance of a possible Allee effect, as recruitment is also
decreased at sites with very low abundance. (After Svane 1984.)

reached (Figure 2.13b). Possible explanations for this Allee effect include the
behavioral attraction of larvae to established adults and entrapment of lar-
vae by local water currents.

Like the Mandarte Island sparrows, these ascidians showed some evidence
of underlying density dependence, although the population never reached a
steady carrying capacity. Both the ascidian and sparrow populations were
affected by temperature fluctuations, although these effects seemed more
subtle and long-term for the ascidians. Unlike the isolated sparrow popula-
tion, the ascidian populations were potentially linked by larval dispersal
between sites, so that a realistic model of population dvnamics might be espe-
cially complex (see Chapter 4).

LOGISTIC GROWTH AND THE COLLAPSE OF FISHERIES POPULATIONS

How many tons of fish should be harvested each year to maximize long-term
vield? This optimal yield problem has been very important to commercial
tisheries because of the huge amounts of money invoived and because over-
fishing has been a problem since at least the 1920s, when commercial stocks
of many species started to decline. The Jogistic growth curve provides a sim-
ple, though often unpopular, prescription for optimal fishing strategies.

The optimal strategy is the one that maximizes the population growth rate,
because this rate determines how quickly fish can be removed from the pop-
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Figure 2.14 Relationship between fishing effort and total catch for the Peruvian
anchovy (Engraulis ringens) fishery. Each point represents the fishing ‘catch and effort
for a particular year. The data include fishing effort by humans and fish catches by
seabird populations. The parabola is drawn by fitting the logistic model to data
from Boerema and Gulland (1973). (After Krebs 1985.)

ulation while still maintaining a constant stock for future production. If a pop-
ulation is growing according to the logistic equation, maximum population
growth rate occurs if the population is held at K/2, half the carrying capacity
(Figure 2.3a). Two other strategies are guaranteed to produce low yields. The
first is to be extremely conservative and remove very few animals at each har-
vest. This keeps the standing stock large, but the yield is low because the pop-
ulation is close to carrying capacity and grows slowly. The other strategy is to
harvest the population down to a very smail size. This also produces low vield
because there are so few individuals left to reproduce.

Unfortunately, this latter strategy of overdepletion has been followed by
all the world’s fisheries. Figure 2.14 shows the yearly catch of Peruvian
anchovy (Engraulis ringens) fitted to the predictions of a simple logistic model.
The model predicts a maximum sustained yield of approximately 10 to 11
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Figure 2.15 Total catch for the Peruvian anchovy (Engraulis ringens) fishery from
1435 to 1981. This was the largest fishery in the world until its collapse in 1972.
{After Krebs 1985; unpublished data from M. H. Glanz.).

million metric tons per vear. The annual catch was close to this sustained
maximum from 1964 to 1971. In 1972, the Peruvian anchovy fishery col-
lapsed, in part due to overfishing, and in part due to an El Nirfio event, in
which a warm tropical water mass moved off the coast of Peru and greatly
reduced productivity. Although fishing was reduced to allow stocks to recov-
cr. anchovy populations have never reached their former abundance and fish-
inz vields remain low (Figure 2.15). Increasingly sophisticated technology
and large factory-ships have depleted world stocks of many fish populations
to the point where the industry itself is doomed to economic collapse. In 1989,
ror example, the cost of operating the world’s 3 million fishing vessels was
o~timated at $92 billion, whereas the total catch was worth only $72 billion
tPitt 1993). The disappearance of human societies that depend on fishing is
also inevitable.

The situation can only be remedied by worldwide restrictions on fishing
and short-term reductions in catch. Unfortunately, this will not be easy
because each individual fishing vessel tries to maximize its short-term yield
by intensive fishing. Migratory fish populations do not obey political bound-
aries, making international policies difficult to enforce. The problem of short-
term versus long-term profits in the exploitation of natural resources is.
known as “the tragedy of the commons” (Hardin 1968).



