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ABSTRACT 

De Wolf, E. D., Madden, L. V., and Lipps, P. E. 2003. Risk assessment 
models for wheat Fusarium head blight epidemics based on within-
season weather data. Phytopathology 93:428-435. 

Logistic regression models for wheat Fusarium head blight were de-
veloped using information collected at 50 location-years, including four 
states, representing three different U.S. wheat-production regions. Non-
parametric correlation analysis and stepwise logistic regression analysis 
identified combinations of temperature, relative humidity, and rainfall or 
durations of specified weather conditions, for 7 days prior to anthesis, 
and 10 days beginning at crop anthesis, as potential predictor variables. 
Prediction accuracy of developed logistic regression models ranged from 
62 to 85%. Models suitable for application as a disease warning system 
were identified based on model prediction accuracy, sensitivity, specifi-
city, and availability of weather variables at crop anthesis. Four of the 

identified models correctly classified 84% of the 50 location-years. A 
fifth model that used only pre-anthesis weather conditions correctly 
classified 70% of the location-years. The most useful predictor variables 
were the duration (h) of precipitation 7 days prior to anthesis, duration 
(h) that temperature was between 15 and 30°C 7 days prior to anthesis, 
and the duration (h) that temperature was between 15 and 30°C and 
relative humidity was greater than or equal to 90%. When model per-
formance was evaluated with an independent validation set (n = 9), 
prediction accuracy was only 6% lower than the accuracy for the original 
data sets. These results indicate that narrow time periods around crop 
anthesis can be used to predict Fusarium head blight epidemics. 

Additional keywords: disease forecasting, Fusarium graminearium, 
Gibberella zeae, head scab.  

 
Epidemics of Fusarium head blight (FHB), caused by Gibberella 

zeae (Schwein.) Petch (anamorph: Fusarium graminearium 
Schwabe), have had a deleterious impact on wheat (Triticum 
aestivum L. em. Thell) production in many regions of North 
America. Accounts of severe epidemics of FHB, or scab, were 
recorded by pioneering plant pathologists, such as J. C. Arthur (4), 
A. D. Selby (26), and others (1,5,25) during the late 1800s and 
early 1900s. In recent years, epidemics of FHB have occurred in 
many wheat-producing states of the United States, including 
North Dakota, Minnesota, South Dakota, Ohio, Indiana, Michi-
gan, Missouri, Kansas, and Arkansas (16). Epidemics of FHB 
result in severe losses through direct reduction in grain yield and 
increased grain cleaning costs (16). Fusarium-damaged grain is of 
particular concern because of mycotoxins (i.e., deoxynivalenol) 
produced by G. zeae in diseased kernels (16,23). Estimated losses 
to growers, grain handlers, and industries that utilize wheat-re-
lated products in North Dakota, Minnesota, and South Dakota 
during 1993 alone have exceeded $1 billion (16). Severe losses 
have continued to occur throughout many of the wheat-production 
regions of the United States (21). 

FHB has proven to be a difficult disease to manage because of 
limitations in control options (7). Despite these difficulties, pro-
gress has been made by recent efforts to improve host resistance 
(3,22) and efficacy of chemical and biological controls (17). Re-
gardless, FHB remains a major concern for wheat producers. A 
disease forecasting system providing wheat producers with re-
liable and timely management recommendations is desirable. A 
timely disease warning also would provide valuable time for grain 
handlers and food processors to deal with the prognosis of disease 

and the potential for mycotoxin contaminated grain by establish-
ing the necessary infrastructure to appropriately test for, and 
manage, the damaged grain. 

One approach to developing a disease forecasting system is 
through risk assessment and management. Generally, a disease 
model is developed to estimate the probability (i.e., risk) of a 
undesirable event occurring at a given location and time (31). 
Fusarium head blight is well suited for risk assessment modeling 
because of the severity of epidemics, compounded losses resulting 
from mycotoxin contamination, and relatively narrow time periods 
of pathogen sporulation, inoculum dispersal, and host infection 
(8,10). 

Research regarding the response of G. zeae to different environ-
mental conditions has been previously reported (2,29,32,33). In-
fection is favored by extended periods (48 to 72 h) at >90% 
relative humidity (RH) with temperatures between 15 and 30°C 
(2). When wetness, or high moisture events, are discontinuous, 
infection can still occur but infection efficiency is reduced (2,6). 
Similarly, G. zeae perithecia development and sexual reproduction 
is favored by temperatures between 15 and 29°C, but is limited at 
temperatures >30°C (33). Moisture level also may influence the 
perithecia development. Experiments on the effects of water po-
tential on perithecia development indicate that in vitro perithecia 
production is the greatest at –1.5 MPa, is limited below –4.0 MPa, 
and is reduced as water potential approaches 0 MPa (29). 

Previous efforts to predict FHB epidemics have occurred in 
Asia (15,19,35), South America (18), and North America (10,12). 
Based on information gathered between 1953 and 1963 in Japan, 
Nakagawa et al. (19) reported correlation coefficients between 
amounts of Fusarium spp.-damaged grain and monthly weather 
summaries. They then provide a linear regression model for pre-
dicting FHB-damaged grain based upon a monthly summary of 
temperature, rainfall, and sunshine prior to heading. Efforts to pre-
dict FHB have been extensive in China, including 19 documented 
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forecast models (15). Most of these models use combinations of 
temperature and rainfall to predict disease levels. However, Zhao 
et al. (35) proposed a prediction system that provides long-range 
disease forecasts based on relationships between sea temperatures 
and FHB severity. Moshchini and Fortungo (18) used 22 obser-
vations of disease severity from the Pampeana region of Argentina 
to develop linear equations for FHB predictions. The authors 
reported how different combinations of temperature, RH, and 
precipitation could be used to predict FHB severity in that region 
based on linear equations. In the United States, Francl et al. (10) 
have utilized a cooperative effort among research institutions to 
identify factors critical to the development of FHB epidemics. 
These findings suggest that information regarding both inoculum 
level and environmental conduciveness are important for accurate 
epidemic prediction. A model developed in Ontario, Canada (12) 
utilizes weather data obtained pre-anthesis and weather forecasts 
postanthesis to predict deoxynivalenol levels in the harvested 
grain. 

Our objectives were to (i) identify weather variables associated 
with epidemic development using existing records of FHB epi-
demics in the United States, (ii) identify periods of crop growth 
during which available weather variables were most critical, and 
ultimately (iii) develop risk-assessment models for wheat FHB 
that provide information important to disease management. 

MATERIALS AND METHODS 

Researchers from North Dakota, Ohio, Missouri, and Kansas 
contributed information about FHB severity, hourly weather, and 
crop growth from hard red spring wheat, hard red winter wheat, 
and soft red winter wheat production regions where FHB epi-
demics have occurred (Table 1). Differences in wheat cultivars as 
well as methods of assessing disease severity (or other measures 
of the impact of the disease) among the regions resulted in no 
consistent quantitative scale for the magnitude of FHB epidemics. 
However, within each region there was a separation between years 
with a major epidemic of FHB and years with little or no disease. 
Thus, each location-year was classified as to whether there was a 
major epidemic (binary code of “1”) or not (“0”). This classifi-
cation corresponded to cases with FHB field severities of �10% 
(“1”) or <10% (“0”). In one location (Kansas), FHB was meas-
ured strictly in terms of yield loss. Only 2 years of data were used 
from this state, with yield losses of 0 and 24% (the former being 
classified as no epidemic and the latter being classified as a major 
epidemic). All cases used to develop the models came from 
replicated cultivar, fungicide, or other field evaluations. The total 
data set used to develop the risk-assessment models consisted of 
50 cases from four states, 12 locations, and more than 18 years of 
data collections (Table 1). Epidemics were recorded in 18 of the 
50 cases. 

Hourly weather observations of temperature (degree Celsius), 
RH (percent), and precipitation (millimeters) were collected by 
automated weather-monitoring equipment near the replicated field 
plots. Proximity of weather-monitoring equipment to field experi-
ments ranged from approximately 10 m to 2 km. Instrumentation 
varied among locations. All weather observations were evaluated 
graphically to identify potential errors or missing data. Location-
years with errors in weather observations or time periods with 
missing data were eliminated from the data sets. Hourly weather 
observations for 30 days before and after crop anthesis were sum-
marized into 24-h observations. To minimize the impact of splitting 
natural wetness or high-RH periods, the 24-h (“day”) summaries 
began and ended at 1200 h (noon). Crop growth stage notes were 
specific to replicated plots from which disease data were 
collected. 

Predictor variables. Information from previous research efforts 
was used to construct predictor (“independent”) variables possibly 
useful during the modeling (2,9,10,18,19,24,29,32,33). These vari-

ables were obtained from (i) the calculation of daily minimums, 
maximums, averages, and sums; (ii) the duration (h) that pre-
specified conditions were met; (iii) the functional response to tem-
perature and moisture; and (iv) the calculation of interaction terms 
between predictor variables. A total of 49 variables were con-
structed from the original hourly observations of temperature, RH, 
and precipitation. Only those variables identified as most useful in 
later portions of the analysis will be discussed in detail. All 
variables were scaled between 0 and 1, by dividing by the ob-
served maximum to ensure uniformity of variable scale, and to 
facilitate the calculation of interpretable interaction terms. 

Nonparametric analysis was used to identify variables poten-
tially associated with the binary representation of FHB epidemic 
status (27). Variables with a Kendall correlation (SAS Institute 
Inc., Cary, NC) coefficient of <0.23 (significance level of >0.05) 
were dropped from the modeling process unless they were deemed 
to contain potentially important biological information not already 
represented in the variables with greater correlation coefficients. 
This process reduced the number of potential variables to 25. 

Logistic regression models. Logistic regression (SAS Institute 
Inc.) was used to model the relationship between FHB epidemics 
and predictor variables (13). As with the more familiar linear 
regression, the goal of logistic regression is to develop the best 
fitting, most parsimonious, yet biologically rational model of a 
given relationship. However, the dependent variable for logistic 
regression is binary, or dichotomous, with an assumed binomial 
distribution of errors. Predictions of the logistic model can be used 
as estimates of the probabilities of events given a set of inde-
pendent variables. This predicted probability lends itself naturally 
to risk assessment analysis. 

Variables identified in the correlation analysis were used as 
predictor variables to develop logistic regression models for clas-
sifying FHB epidemics. A stepwise logistic procedure initially 
was used only as a guide, and multiple logistic models with one, 
two, or more predictor variables were evaluated. The prediction 
accuracy (percentage of correctly classified cases) was determined 
for each evaluated model, and predictor variables that produced 
the highest accuracy were further evaluated by considering their 
interactions. For instance, if X1, X2, and X3 represent three 
predictor variables, then two-way interactions (e.g., X1X2), and the 
three-way interaction (X1X2X3) were calculated. Box plots of the 
interaction terms and predictor variables were used to assess 
potential separation of epidemic and nonepidemic location-years 
based on a given variable. The interaction terms then were used in 
a stepwise logistic regression analysis with the previously identi-
fied predictor variables to determine the models with the highest 
prediction accuracy. 

TABLE 1. Information on the data sets used to develop logistic models of 
predicting epidemics of Fusarium head blight of wheat based on weather 
data 

State Location Yearsa Wheat classb 

Ohio Wooster 16 SRW 
Ohio Hoytville 2 SRW 
Ohio South Charleston 1 SRW 
North Dakota Fargo 7 HRS 
North Dakota Cando 4 HRS 
North Dakota Langdon 4 HRS 
North Dakota Carrington 2 HRS 
North Dakota Dazey 1 HRS 
Missouri Novlty 5 SRW 
Missouri Columbia 3 SRW 
Missouri Lamar 3 SRW 
Kansas Powhattan 2 HRW 

a Number of years included in this analysis from location indicated in 
previous column. 

b SRW = soft red winter wheat, HRS = hard red spring wheat, and HRW = 
hard red winter wheat. 
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Assuming that p is the probability of an epidemic, the logistic 
model with X1 and X1X2 as predictors can be written as  

��
�

�
��
�

�

� p

p

1
ln  = �0 + �1X1 + �2X1X2  (1) 

in which �0 to �2 are parameters. In nominal use, a location-year 
is classified, for validation purposes, as an epidemic if the 
predicted p based in equation 1 is greater than 0.5. However, the 
highest accuracy may correspond to a different p. The critical  
p for classifying a location-year as an epidemic (p*) is deter- 
mined by calculating sensitivity and specificity for each predicted 
p, and selecting the p with the largest summation of sensitivity 
and specificity (28). Sensitivity is defined as the percentage of 
correctly classified epidemics and specificity is the percentage of 
correctly classified nonepidemics. Prediction errors (mis- 
classified location-years) of the models with the highest prediction 
accuracies were analyzed to aid in the evaluation of model 
performance. 

The accuracy of the identified models was assessed with a 
second validation data set. This data set consisted of nine loca-
tion-years representing locations from Ohio, North Dakota, and 
Pennsylvania, and were obtained after models were developed. 
Weather and disease variables were recorded using methods de-
scribed for data used in model development. Validation data 
remained independent of the data set used to develop the logistic 
regression models. 

RESULTS 

Variable associations with scab epidemics. Correlation analy-
sis and stepwise logistic regression procedures identified 25 vari-
ables that were individually related to, or related in combination 
with, FHB epidemics across the 50 location-years (Table 2). 
Kendall correlations for these 25 variables ranged from 0.11 to 
0.54. Many of these variables were intercorrelated and, thus, could 
not be used together in a model to classify location-years. For 
instance, T157 and T15307 values were very close for most years 
because there were few hours during this time of year (in the years 
studied) with temperatures greater than 30°C. In general, the mag-
nitude of the correlations were higher for the anthesis variables 
than for the pre-anthesis variables. The variable most correlated 
with epidemics of FHB was TRH9010 (Table 2), the hours of  
RH � 90% that were also between 15 and 30°C for the 10 days 
following anthesis. This variable also was the most significant 
single variable in a logistic regression model. Variables that sum-
marized humidity at thresholds <90%, or weighted RH values 
approaching the 90% threshold, had reduced correlation coeffi-
cients than those that used the �90% threshold. Similarly, vari-
ables that summarized temperature values weighted above or 
below the reported optimums (2,33) also had reduced correlation 
coefficients. 

Stepwise logistic regression identified three variables as jointly 
having a strong relationship with FHB epidemics and nonepi-
demics. The first was TRH9010 and the other two summarized 
weather over the 7 days prior to crop anthesis (T15307 and 

TABLE 2. Weather variables potentially of value in predicting epidemics of Fusarium head blight of wheat were identified based on nonparametric correlation 
coefficient, F statistic for individual variable inclusion in a logistic model, or inclusion as part of group variables in a multiple-logistic model 

Variable Definitiona Kendall correlationb F valuec 

Pre-anthesis weather variablesd    
MT7 Average daily minimum T (°C) 0.28 6.07 
T157 Duration (h) T � 15°C 0.25 4.48 
T15307 Duration (h) of 15 � T � 30°C 0.29 5.99 
RH7 Average daily RH (%) 0.25 5.90 
RHR7 Sum of RH response 0.20 2.80 
TRHR7 Combination of T and RH response functions 0.30 7.78 
RH907 Duration (h) RH � 90% 0.26 4.08 
TRH907 Duration (h) 15 � T � 30°C, and RH � 90% 0.40 12.57 
TRH807 Duration (h) 15 � T � 30°C, and RH � 80% 0.30 8.18 
PPT7 Sum of precipitation (mm) 0.23 1.82 
DPPT7 Duration of precipitation (h) 0.11 1.75 

Anthesis weather variablese    
MT10 Average daily minimum T (°C) 0.29 5.25 
T1510 Duration (h) T � 15°C 0.27 6.38 
T153010 Duration (h) of 15 � T � 30°C 0.36 10.65 
TR10 Sum of T response function 0.25 5.78 
RH10 Average RH (%) 0.48 19.06 
RHR10 Sum of hourly RH response function 0.40 13.48 
TRHR10 Combination of T and RH response function 0.49 17.89 
RH9010 Duration (h) RH � 90% 0.41 15.69 
RH8010 Duration (h) RH � 80% 0.40 14.34 
RH5D10 5 day moving window for average RH (%) 0.46 17.85 
TRH9010 Duration (h) 15 � T � 30°C, and RH � 90% 0.54 31.22 
TRH8010 Duration (h) 15 � T � 30°C, and RH � 80% 0.47 21.30 
PPT10 Sum of precipitation (mm) 0.23 1.65 
DPPT10 Duration of precipitation (h) 0.13 1.20 

Interaction terms    
INT1 Interaction term = T15307 × DPPT7 0.23 4.52 
INT2 Interaction term = DPPT7 × TRH9010 0.44 15.00 
INT3 Interaction term = T15307 × TRH9010 0.55 40.84 
INT4 Interaction term = T15307 × DPPT7 × TRH9010 0.48 20.47 

a T = temperature, RH = relative humidity, sum of RH response = values derived from an equation developed to estimate a response of Gibberella zeae to 
relative humidity or temperature (11). 

b Kendall correlation coefficient for weather variable given in first column and disease level coded as a binary variable (1 = epidemic; 0 = nonepidemic, or low 
disease). 

c F statistic calculated by stepwise regression procedure. 
d All variables correspond to the 7 days prior to anthesis. 
e All variables corresponded to the 10 days following the initiation of anthesis (i.e., the 10 days starting when 50% of flowering has occurred).  
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DPPT7). Several of the individual variables that were highly asso-
ciated with FHB epidemics (e.g., TRH8010) were not included in 
the multiple-variable logistic model because of their correlation 
with other variables in the model. Conversely, one of the variables 
identified by the stepwise logistic regression, DPPT7, individually 
had only a low correlation with epidemics. Two- and three-way 
interaction terms were calculated for these three variables, and all 
subsequent analyses and models were based on these variables 
and their interactions. 

Box plots of predictor variables and interaction terms support 
the results of the correlation and stepwise analysis (Fig. 1). The 
greatest degree of separation of epidemic and nonepidemic loca-
tion-years visible in the box plots was associated with the 
TRH9010 variable, and related interaction terms. When consid-
ered singly, variables summarizing pre-anthesis weather (T15307 
and DPPT7) provided only a limited amount of visual class-sepa-
ration relative to TRH9010. 

Logistic regression models. When the three identified vari-
ables and their interaction terms were used to develop logistic 
regression models, 11 models were identified with prediction 
accuracies ranging from 62 to 84% (Table 3). Of the 11 models, 
10 significantly (P < 0.05) predicted epidemics. Four models (A to 
D) correctly classified 84% of the 50 cases. One of these four 
models used only the temperature and humidity combination vari-
able postanthesis, TRH9010 (model A). The other three models 
utilized at least one of the interaction terms. Both pre-anthesis and 
anthesis variables were included in models B to D, usually in the 
form of an interaction. Two models (models C and D) correctly 
classified >90% of the nonepidemics (specificity), but correctly 
classified <73% of the FHB epidemics (sensitivity). The other two 
models (A and B) had nearly equal sensitivity and specificity. 
Each of these four identified models (A to D) incorrectly classi-
fied eight cases, but only four were incorrectly classified by all 
these models (Table 4). Two of these four errors were false nega-
tives and two were false positives. 

The remaining models identified by the stepwise procedure (E 
to K) had prediction accuracies (percentage of correctly classified 
cases) between 62 and 82% (Table 3). Some of these were very 
complicated, with many predictor terms (E and H). This can result 
in biased parameter estimates and difficulty in interpretation, and 
extrapolation (20). The others had either lower sensitivity or lower 
prediction accuracy than did models A to D. 

Models that used only pre-anthesis weather (I, J, and K) gen-
erally were inferior to those that used postanthesis variables of 
combinations of pre- and postanthesis. Although the models using 
either pre-anthesis precipitation or temperature (J and K) had high 
specificities (>80%), they had extremely low sensitivities  
(<34%). In contrast, the postanthesis model using one variable (A) 
had high sensitivity and specificity. The highest prediction 
accuracy for a model that used only pre-anthesis weather variables 
was 70% (model I). This model incorrectly classified a total of  
15 of the 50 location-years. Of these 15 location-years, 8 were 
false negative predictions. Six of the location-years incorrectly 
classified by model I corresponded to cases with errors made  
by the identified models that used anthesis weather variables  
(A to D) (Table 4). However, model I did correctly classify two of 
the four location-years that models A to D had incorrectly 
classified. 

Model assessment. Based on model prediction accuracy, fit, 
and simplicity, the models that used either TRH9010 (A), or 
T15307 × TRH9010 (INT3; B) variable to predict FHB epidemics 
were selected for further evaluation as potential FHB risk assess-
ment models. In addition, a model using only pre-anthesis weather 
(I) was included in the further analysis because it had the potential 
to provide predictions early enough to make management decisions 
without forecasting the weather during anthesis. 

The three logistic models (A, B, and I) were rearranged alge-
braically to solve for the weather variables that would give a 
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Fig. 1. Box plots of three weather variables and their interactions (products) 
identified by Kendall correlation and stepwise regression procedures as 
potential predictors of wheat Fusarium head blight epidemics. Each box 
represents the distribution of weather data from epidemic (coded as 1) and 
nonepidemic years (0). The line within the box is the median. The top and 
bottom lines of the box represent 25th and 75th percentile of the data. Lines 
extending vertically beyond the box represent the 10th and 90th percentiles, 
and solid circles indicate outliers. T15307 = duration (h) of 15 � T � 30°C; 
TRH9010 = duration (h) 15 � T � 30°C, and RH � 90%; DPPT7 = duration 
of precipitation (h); INT.1 (interaction term) = T15307 × DPPT7; INT.2 = 
DPPT7 × TRH9010; INT.3 = T15307 × TRH9010; and INT.4 = T15307 × 
DPPT7 × TRH9010. 
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predicted probability of an epidemic equal to the critical value 
(p*). The following equations were obtained:  

1

0
*)(9010TRH �

�

pLogit  (2) 

15307T
)(9010TRH

1

0
*
�

�

pLogit  (3) 

2

10
* 7DPPT)(15307T ��

�

pLogit  (4) 

with the p* values and � estimates for model equations are given 
in Table 3, and all variables scaled between 0 and 1. For equation 
2, a scaled TRH9010 value of >0.41 indicates an epidemic; 
returning to original units, this indicates an epidemic when 
TRH9010 is >56 h (0.41 × 136). This threshold can be represented 
graphically with a straight line passing through a scatter plot of 
epidemic and nonepidemic location-years; thus separating the two 
classes by respective TRH9010 values (Fig. 2A). The proximity of 

each point in the scatterplot relative to this line, or decision 
threshold, confers the likelihood of membership in either class. 
Points lying near the decision threshold have a near-equal likeli-
hood of being classified correctly into either class. Moreover, as 
distance from the decision threshold increases, the probability of a 
given point (location-year) being classified correctly into the 
appropriate class also increases. For example, if THRH90 = 71 h 
(model A), the probability of an epidemic is 51% (Table 3). 
Similarly, if TRH9010 = 131 h, the probability of an epidemic is 
96%. These same principles apply for equations 3 and 4; however, 
only for these equations a combination of variables determines the 
prediction (Fig. 2A and B). For example, equation 3 contains the 
interaction term INT3 (T15307 × TRH9010), resulting in a curved 
decision threshold with respect to the environmental conditions 
both prior to (T15307) and during crop anthesis (TRH9010) (Fig. 
2A). For instance, at T15307 = 105 h, TRH9010 must be at least 
72 h for an epidemic to be predicted. However, at T15307 = 150 h, 
TRH9010 needs only to exceed 51 h for an epidemic to be 
predicted. In the case of equation 4, because there was no inter-
action term, pre-anthesis temperature and rainfall are combined to 

TABLE 4. Location-years incorrectly classified by one or more models, with information on corresponding year, location, and values of some weather variables 
used and not used in the models 

 Location/yeara 

 1/1991 2/1997 3/1997 4/1996 4/1998 5/1996 5/1999 6/1994 7/1998 7/1993 7/1995 8/1997 

FHB severityb 0 0 0 0 50 15 8 18 12 45 12 10 
Modelc             

Model A x x x x … … x x … x x … 
Model B x x x x … … x x … x … x 
Model C x … x x … x … x x x x … 
Model D … … x x x x … x x x … x 
Model Id … … … x x x x … … x … x 

Weather variablese             
T15307 98 103 111 116 157 135 144 133 167 91 154 59 
DPPT7 3 0 14 26 2 3 10 14 7 16 12 39 
TRH9010 111 109 84 88 132 58 67 43 60 54 53 73 

a Location of observations 1 = Hoytville, OH; 2 = Wooster, OH; 3 = Columbia, MO; 4 = Novlty, MO; 5 = Cando, ND; 6 = Carrington, ND; 7 = Fargo, ND; 8 = 
Langdon, ND. 

b FHB = Fusarium head blight. 
c Location-years incorrectly classified by the indicated model; x = error; … = correct. Model equations are provided in Table 3. 
d Model I had an additional seven errors not included in this comparison with models A to D. 
e T15307 = duration (h) of 15 � T � 30°C; DPPT7 = duration of precipitation (h); and TRH9010 = duration (h) 15 � T � 30°C, and RH � 90%. 

TABLE 3. Logistic models developed for classifying location-years for Fusarium head blight epidemics, together with prediction accuracy, sensitivity, and 
specificity 

 
Model 

 
Model equationa 

 
p*b 

Predicted 
accuracy (%)c 

 
Sensitivity (%)d 

 
Specificity (%)e 

A –3.3756 + 6.8128TRH9010 0.36 84 83 84 
B –3.7251 + 10.5097INT3 0.44 84 83 84 
C –1.0585 + –14.2400INT1 + 39.4590INT4 0.42 84 72 91 
D –1.5424 + 31.7868INT4 + –5.8085DPPT7 0.50 84 67 94 
Ef 18.5627 + –36.4659T15307 + –56.6710DPPT7 + –75.8177TRH9010 + 

87.3140INT1 + 171.0INT2 + 128.3INT3 + –256.9INT4 
 

0.44 
 

82 
 

78 
 

84 
F –4.3732 + 5.5900INT2 + 9.8315INT3 0.50 82 72 88 
G –9.3117 + 9.4323T15307 + 13.4019INT2 0.52 82 67 91 
H –12.0661 + 9.2514T15307 + 4.5941DPPT7 + 7.5393TRH9010 0.50 78 72 81 
I –8.2175 + 8.4358T15307 + 4.7319DPPT7 0.50 70 56 78 
Jf –4.2804 + 5.1343T15307 0.52  68 33 88 
Kf –1.1646 + 1.8297DPPT7 0.44 62 17 88 

a Logistic regression models were developed using data collected in Ohio, North Dakota, Missouri, and Kansas (n = 50). Variables are defined in Table 2. 
Model variables were rescaled between 0 and 1 by dividing by the maximum observed value in cases considered in this analysis. To use the equations, 
variables must first be placed in same scale as data used to develop the models. This can be done by dividing TRH9010, T15307, or DPPT7 by 136, 168, or 
39, respectively (TRH9010/136; T15307/168; DPPT7/39). The probability of a greater �2 value for a likelihood ratio test for models A to H was P < 0.0001, 
and P < 0.0015, 0.0155, and 0.1869 for models I, J, and K, respectively. 

b The critical predicted probability of a severe epidemic, p*, as determined by calculating sensitivity and specificity for the full range of p values, and choosing 
the p with the largest summation of sensitivity and specificity. 

c Predicted accuracy as percentage of correctly classified cases of epidemic and nonepidemics (epidemic = disease severity of �10%). 
d Sensitivity, as percentage of correctly classified epidemics. 
e Specificity, as percentage of correctly classified nonepidemic. 
f Predictor variable not selected by the stepwise procedure, but model included for comparison. 
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produce a sloped straight line that functions as the decision 
threshold (Fig. 2B). The lower accuracy for model I is demon-
strated in Figure 2B by the multiple occurrences of open circles 
(epidemics) below the line and solid circles (nonepidemics) above 
the line. 

Model validation. When the performance of models A, B, and 
I was evaluated with the validation data set, models A and B cor-
rectly classified 7 of the 9 location-years and incorrectly classified 
the same 2 location-years; both errors were false positive epi-
demic predictions. Model I correctly classified 6 of the 9 valida-
tion cases. Two of the errors made by model I were false negative, 
and the remaining error a false positive. Errors of model I did not 
correspond with errors made by models A and B.  

DISCUSSION 

In general, FHB epidemics from the 50 location-years evaluated 
in this analysis were associated with extended periods of favor-
able temperature (15 to 30°C) and extended periods of high RH 
(�90%) before or during anthesis. This result is in agreement with 
past observations of weather conditions associated with epidemics 
(1,4,5,16,24,25,30). 

The value of temperature and humidity variables used in classi-
fying FHB epidemics supports the conclusions of previous re-
search conducted in controlled environments (2,9,33). Specifi-
cally, the 56-h critical value of TRH9010 for the logistic model 
that used this variable alone (model A) is within the range of high 
RH durations (48 to 72 h) determined in experiments at constant 
temperatures between 15 and 30°C (2). The usefulness of the pre-
anthesis temperature and precipitation variables (T15307 and 
DPPT7) may reflect the influence of temperature and moisture on 
perithecia development by G. zeae (9,24,33). Although prediction 
accuracy of models that used only variables that summarized pre-
anthesis weather was lower than models that used variables that 
summarized weather conditions during anthesis, the 70% accuracy 
of model I indicates that pre-anthesis conditions have potential 
value as predictors of FHB epidemics. In the future, research to 
clarify the relationship between perithecia development and 
weather variables may aid in the identification of other pre-
anthesis variables that could improve model prediction accuracy. 

The importance of temperature and moisture variables to the 
prediction of FHB epidemics also is supported by other efforts to 
predict disease level (10,18,19), or mycotoxin contamination (12). 
Moreover, Hooker et al. (12) reported the importance of tempera-
ture and moisture variables during similar periods of host growth. 
However, these models differ considerably in the way that tem-
perature and moisture are represented. For example, the models 
proposed by Hooker et al. (12) represent moisture in the form of 
rain as opposed to RH, and use different minimum and maximum 
temperature thresholds than proposed in this report. Direct com-
parison between the prediction models for FHB and associated 
mycotoxins were limited because one or more of the variables 
(i.e., inoculum level or deoxynivalenol content) needed for the 
different modeling efforts where not available in the existing data 
sets. Future validation analysis will need to address comparisons 
in model performance. 

Logistic regression models. This analysis identified four logis-
tic regression models with 84% prediction accuracy (Table 3; 
models A to D). Given that the models used data from only  
17-day windows, and were applied to different cropping systems 
and wheat types, this prediction accuracy was considered high. 
Estimates of model accuracy with a validation data set (78%) 
were within 6% of estimates of model accuracy with the model 
generating data sets. Based on model prediction accuracy and high 
level of sensitivity (percentage of correctly classified epidemics), 
models A and B were selected for further evaluation. 

An error analysis can be useful for understanding model proper-
ties. Errors of models A and B were associated with location-years 

when severity level was near (�2%) the preselected 10% field 
disease severity threshold, or when weather variables that likely 
contributed to the epidemic were not considered by the models 
(Table 4). For example, the 1993 Fargo location-year was in-
correctly classified as a low disease year by the models. In this 
year, the 10-day time period during anthesis was associated with 
54 h of favorable temperatures and RH as defined by the 
TRH9010 variable. This value is very close to the 56-h threshold 
of TRH9010 established for model A (Fig. 2). Moreover, this 
location-year received 21 h of rainfall during this 10-day period, 
and 137 mm of rain in the 7 days following the time period 
considered by this model. Thus, weather conditions (i.e., frequent 
rains) not considered by model A likely contributed to the high 
disease levels observed in this year. The impact of variables not 
considered by the model on model errors was particularly evident 
with model I. Errors for this model, which used only pre-anthesis 
variables, most commonly corresponded with location-years that 
had conditions during crop anthesis favorable for infection (Table 
4). For example, model I incorrectly classified the 1998 Novlty 
location-year as nonepidemic based on limited (2-h) duration of 
pre-anthesis rainfall. However, this model did not consider the 
132 h of favorable temperature and humidity (TRH9010) that 
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Fig. 2. Values of weather variables for the 50 location-years used in models 
A, B, and I; and threshold values (lines) for predicting an epidemic of 
Fusarium head blight based on equations 2 to 4. An observed epidemic is 
indicated with an open circle and a nonepidemic is indicated with a solid 
circle. A, Solid line (equation 3) represents the threshold for model B, and 
the broken line for model A (equation 2). B, Line represents the threshold for 
model I (equation 4). T15307 = duration (h) of 15 � T � 30°C; TRH9010 = 
duration (h) 15 � T � 30°C, and RH � 90%; DPPT7 = duration of 
precipitation (h). Models are provided in Table 3. The coefficients in the 
models of Table 3, and corresponding equations 2 to 4, are based on scaled 
predictor variables. 
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occurred during the anthesis time period in that year. The 1999 
Cando location-year is an example of a model error associated 
with disease severity close to the severity threshold. In this case, 
average disease severity for the replicated plots was estimated to 
be 8% (Table 4), but models A, B, and I predicted an epidemic of 
10% severity or greater based on recorded weather variables. Vari-
ability in disease assessment or influence of field-scale environ-
ment and inoculum levels may account in part for this error. 
Patterns in model errors identified with the validation cases were 
consistent with errors described for model development data. 

Attempts to incorporate variables that had potential to improve 
prediction accuracy, such as precipitation during anthesis (as done 
by Hooker et al.) (12), did not improve the accuracy of models A 
and B (E. D. De Wolf, unpublished data). This may be due, in 
part, to the infrequency of these extreme weather events in the 50 
location-years evaluated in this analysis. Incorporating nonsignifi-
cant terms in a regression model leads to biased and imprecise 
estimates of parameters (19). Thus, other variables were not added 
to the models. 

Model application. The application of these predictive models, 
like many weather-driven prediction systems, will depend on the 
availability, resolution, and reliability of weather data. A potential 
limitation of both models A and B (as well as models C and D) 
was the dependence on weather information during anthesis when 
the most successful fungicide applications have been timed. While 
it may be possible to overcome this limitation by using forecasted 
weather, the uncertainty of the predicted weather variables may 
reduce model prediction accuracy. In contrast, the model that used 
only pre-anthesis variables (model I) had a 14% lower prediction 
accuracy than models A or B, but was free from potential limita-
tions associated with using forecasted weather variables. How-
ever, precise forecasts of temperature and RH are not needed to 
use the models with TRH9010, only forecasts for extended 
periods of high RH with moderate temperatures. Further research 
is needed on forecasts of these variables in wheat-growing areas. 

One possible way of using these models would be to combine 
the pre-anthesis model (I) with the two models that use weather 
conditions after the initiation of crop anthesis (models A and B), 
and make successive predictions in a given year. For example, a 
preliminary prediction of the probability of an FHB epidemic 
could be made at the start of the flowering period (Feeks’ GS 
10.5.1) based on observed weather and model I, or possibly based 
on model I in combination with forecasted weather and models A 
and B. Disease prediction could be updated with models A and B 
as more real-time weather information became available during 
the anthesis period. A final prediction then could be made at the 
end of the 17-day period for the probability of an FHB epidemic 
provided by all three models. The model predictions can be influ-
enced by unusually wet conditions outside the 17-day time period, 
or precipitation conditions not considered by the model; therefore, 
prediction will never be 100% accurate. Thus, predictions will be 
subject to uncertainty about weather conditions in subsequent time 
periods. The advantages to such an approach include disease pre-
dictions with maximum available observed data at anthesis, when 
a fungicide application might be warranted, and then shifting 
priorities to predicting Fusarium spp.-damaged grain and risk of 
mycotoxin contamination to allow for the establishment of grain 
handling priorities. 

The current level of model accuracy represents a considerable 
advancement toward predicting FHB epidemics in North America 
considering that data from only a 17-day window are utilized. 
However, it may be possible to improve model accuracy through 
the incorporation of precipitation variables during the anthesis 
time period (12). Precipitation variables considered in the present 
analysis did not improve model accuracy; therefore, it is probable 
that novel representations of this information will need to be 
evaluated for possible contribution to model accuracy. Given the 
importance of crop residues in pathogen survival (14,34), it also 

may be possible to improve model performance through the 
addition of variables containing information about local inoculum 
sources. This information was unavailable for this analysis, but 
factors such as the presence of crop residue and residue type (i.e., 
corn, wheat, or soybean) may serve as valuable predictors of dis-
ease at a local level when coupled with critical weather variables. 
The presence of inoculum from residue may be related to some of 
the prediction errors with the models. The identified models 
should be of use in predicting the risk of FHB epidemics in the 
regions for which they were developed. As with all disease pre-
diction models, it is advisable to evaluate model performance 
before application in other wheat production regions. 
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