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Model Presentation and Predictions

COMPETITIVE INTERACTIONS

Chapters 1 through 4 examined single-species population growth. Althouly
we didn’t exclude the possibility that other species were important, we il
not write explicit equations for populations of predators, prey, or competi
tors. Instead, the effects of other species were contained in constants such as
K, the carrying capacity of the environment (Chapter 2), or p,, the probability
of local population extinction (Chapter 4). In this chapter, we will introduce i
second population of a competing species and model the growth of two infer
acting populations.

Before introducing the model, we need to specify exactly what we mean
by “competition.” Competitive interactions are those in which two specion
negatively influence each other’s population growth rates and depress cach
other’s population sizes. This general definition encompasses a variety ol
population interactions. Exploitation competition occurs when populations
depress one another through use of a shared resource, such as food or nutri
ents. Examples include tropical reef fish that graze on the same kinds of
algae, and desert plants that compete for a limited supply of water.

Interference competition occurs when an individual or population behaves
in a way that reduces the exploitation efficiency of another individual or pop
ulation. Examples include song birds that maintain well-established breediny
territories, and ant colonies that kill invaders at food patches. Even planis
engage in a form of interference competition known as allelopathy. Many plant
species, particularly aromatic herbs, release toxic chemicals that poison the soil
for competitors. The key element in interference competition is that species
supress one another directly, not only through their indirect use of resources.

Interference competition leaves more resources for the winner to consume,
so it may evolve as an adaptation when exploitation competition is severe,
As an analogy for understanding these two kinds of interactions, exploita
tion competition is when you and a friend are sitting at a table drinking the
same milkshake with straws. The “winner” in exploitation competition is the
one who consumes the most milkshake. Interference competition is when you
reach over and pinch your friend’s straw!

Pre-emptive competition is a third category that has elements of both
exploitation and interference. In pre-emptive competition, organisms com-
pete for space as a limiting resource. Examples include birds that use trec
holes for nesting and intertidal algae that must attach to stable rock surfaces.
Unlike food or nutrients that are used exploitatively, space is a renewable
resource that is “recycled”—as soon as an organism dies or leaves, the space
is immediately available for use by other individuals.

- We need to consider not only the mechanism of competition, but the extent
1 which competition occurs within and between species. Intraspecific com-
plition is competition that occurs among members of the same species. The
ipintic equation (Equation 2.1) is a model of intraspecific competition
wenuse the per capita growth rate diminishes as the population becomes
it crowded. Interspecific competition is competition between individuals
w0 or more different species. In this chapter we will build a model of
\lerspecific competition that is a direct extension of the logistic equation.

I LOTKA-VOLTERRA COMPETITION MODEL

i the 1920s and 1930s, Alfred J. Lotka (1880-1949) and Vito Volterra
I860-1940) described a simple mathematical model of interspecific compe-
llon that is the framework for competition studies in ecology. The model
wits populations of two competing species, which we will designate as N;
i Ny. Each population grows according to the logistic, with its own intrin-
¢ rate of increase (1 or 1) and its own carrying capacity (K; or K;). As in the
logistic model, population growth is reduced by intraspecific competition:

Expression 5.1

dN K, -N

d—t2 = erz(szzz] Expression 5.2

I our new model, the population growth rate is further depressed by the

resence of the second species. For now, assume that the growth is reduced

1y some function (f) of the number of individuals of the competitor:
Ki-N;-f(N

ANy _ N (1411‘(2]

dat Expression 5.3

K

N, Ky =N; - f(N4)
T "N, (___K 2 Expression 5.4
- ese expressions show that population growth rate is depressed by both
Intraspecific and interspecific competition. There are many complicated func-
Hons that we could use in Expressions 5.3 and 5.4, but the simplest formula is
10 multiply the population size of the competitor by a constant number:

i i N T
. Egj- 1N1[~K—1~_~*-P%i—-——%)' Equation 5.1
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AN Ky —N,—pBN
22 _mN z(w] Equation 5.2

dt Ky

COMPETITION COEFFICIENTS -

The competition coefficients o and f are critical to understanding the
Lotka—Volterra model. & is a measure of the effect of species 2 on the growth
of species 1. If & = 1, then individuals of the two species are interchangable—
each has an equal effect in depressing the growth of species 1. On the other
hand, suppose that & = 4. Each individual of species 2 that is added to the
environment depresses the growth of Ny by the same amount as adding four
individuals of species 1. Thus, & is a measure of the relative importance per
individual of interspecific and intraspecific competition. If & > 1, the per capi-
ta effect of interspecific competition is greater than the per capita effect of
intraspecific competition. If & < 1, the intraspecific competition is more
important—population growth of species 1 is depressed more by the addi-
tion of an individual of Ny than by addition of an individual of the competing,
species. Finally, notice that if & = 0, there is no competitive effect, and
Equation 5.1 reduces to the single-species logistic equation (Equation 2.1).
Thus, we can define & as the per capita effect of species 2 on the population
growth of species 1, measured relative to the effect of species 1.

Similar reasoning applies to the interpretation of 8, which is the per capita
effect of species 1 on the population growth of species 2. It is important to
realize that  and 8 need not have the same values. Competitive effects in
nature often are asymmetrical—adding an individual of one species may
severely depress the population growth of a second species, whereas the
reverse is not true. Although both species in our model coexist in the same
location, remember that they each have separate carrying capacities (K; and
Kj), and intrinsic rates of increase (r; and r;). Although ry and r, do not affect
the outcome of competition in this model, we will see in the next section that
the carrying capacities and competition coefficients are critical for determin
ing species coexistence.

A useful way to understand ¢ and f3 is to return to the analogy we devel
oped in Chapter 2 (Krebs 1985): the carrying capacity of the environment for
species 1 is a square frame that holds a limited number of flat tiles (individu
als). In our competition model, the tiles come in two different sizes, ropire:
senting the two different species (Figure 5.1). Continuing the analogy, o in e

relative area of the two tiles. For example, if ¢ = 4, then a single individual
of species 2 consumes four times the remaining resources of the environment
as a single individual of species 1. So, a tile of species 2 law four thimen the
area of a tile of species 1. At equilibrivm, the frame fs (lled with o mix of the
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Figure 5.1 A graphical analogy for i ifi iti

. alogy for interspecific competition. The heavy square
. frnme_represents‘ the carrying capacity for species 1 (Ky). Each individ u)z:l (}onsumeq
| f)rhcl)n of the limited resources available and is represented by a tile. Individuals
. Wi species 2 reduce the carrying capacity four times as much as individuals of

Apecies 1. Hence, the tiles for species 2 imes e 5 i
B et 1985_;3 les 2 are four times larger than those for species 1,

* Iwo kinds of tile. In the next section we will solve for these equilibrium den-

TQUILIBRIUM SOLUTIONS
* inall our pmvioys analyses, we find the equilibrium population densities
) by setting the differential equations equal to zero and solving for N

N1 =K;-aN, Equation 5.3

Ny = Ky '—ﬁNl Equation 54
e results make intuitive sense. The equilibrium for Nj is the carryin
Ipacity for species 1 (K;) reduced by some amount due to the presence ogf
pelon 2 (aNs). But we have trouble putting numbers into these solutions—
Builibrium for species 1 depends on the equilibrium for species 2, and
Vorsal We can make progress by substituting the equilibrium for N, into
1on 5.3, 5o that the answer will be entirely in terms of Ni: :

Ny = Ky = a(Ky - BN))
“_- y . - "

lixpression 5.5
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Similarly, we can substitute the equilibrium for N, into Equation 5.4:
Ny'=K; - B(K; —aN,)

For each of these expressions, we carry out the multiplication, move all the
N terms to the left side of each equation, and arrive at the following solutions:

Expression 5.6

g - Ki-oKy

N; = ‘d-af Equation 5.5
~  Ky-pBK ;
Ny = 12—0)?)3 L Equation 5.6

Note that for both species to have an equilibrium population size greater than
zero, the denominator of each expression must usually be greater than zero.
Thus, it is usually the case that the product o must be less than 1 for both

species to coexist.

THE STATE SPACE

Although Equations 5.5 and 5.6 tell us the equilibrium conditions for the
Lotka-Volterra competition models, they do not provide much insight into
the dynamics of competitive interactions, or whether these equilibrium points
are stable or not.

We can understand these equations much better by using the state-space
graph, a special kind of plot. In the state-space graph, the x axis represents the
abundance of species 1, and the y axis represents the abundance of species 2.
This graph takes a bit of getting used to, but it is an important tool in mulli
species models. We will use it again in Chapter 6, when we explore preda
tor—prey models.

What do points in state space represent? A point in this graph representy
a combination of abundances of species 1 and species 2. The abundance ol
species 1 can be read from the x axis and the abundance of species 2 can by
read from the y axis. If our point falls on the x axis, then only species | i
present and the abundance of species 2 is zero. For points on the y axis, only
species 2 is present. So, the full collection of points in this graph represents
all the different combinations of species 1 and species 2 that we could pul
together.

We use the state-space graph to understand the population dynamics of
two competitors. Imagine two competing species whose populations ar

changing size with time. At each point in time, we could represent their abus

dances by a single point in the state space (Figure 5.2a), As both pu|.1ulnlim't‘_
change in size (Figure 5.2b), we would trace a line in the state space, The final
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Uire 5.2 (a) A state-space graph. The axes of the state space are the abundances of
# lwao species (N and Na). As abundances change through time, a curve is traced
i et 1o right. The numbers on the curve indicate time, beginning at 0 and end-
L0, (b) Translation of the state-space graph in (a). The abundances of each
Belew are read from the state-space graph at different times. Note that species 2
ncreases and then decreases, whereas species 1 shows a continuous increase in

Lation slze,

bt point is the end of this line, and if either species goes extinct, this
falls on one of the two axes of the state-space graph.

W ean we use the state-space graph to help us understand the Lotka—
1 eguations? We will fiest plot Eguation 5.3 in the state space, Equation
eopuilibeiam solution for species |, and ity graph is a straight line.
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This line represents the combinations of abundances of species 1 and species
2 for which there is zero growth of species 1. At any point on this line, the
carrying capacity for species 1 is entirely “filled” with individuals of both
species. This line is an isocline: a set of abundances for which the growth rate
(dN/dt) of one species is zero.

The isocline for species 1 intersects the axes of the state-space graph in two
places. The intersection on the x axis is at a value of Kj. This equilibrium point
represents the case in which species 2 is absent and species 1 has grown to
its own carrying capacity. The other point is the intersection on the y axis.
Here, species 1 is essentially extinct, and the carrying capacity of species 1 is
entirely filled with individuals of species 2. The equilibrium solution at this
point is Ky /e individuals of species 2 and zero individuals of species 1.
Between these extremes are combinations of both species that fall on the iso-
cline (Figure 5.3).

The isocline for species 1 splits the state space into two regions. If we are to
the left of the isocline, the joint abundance of Ny and N; is less than the car-

K1fﬂf|
/dN]/dt=0

Ny

Figure 5.3 The linear isocline for species 1in the Lotka-Volterra compelition model

The isocline defines the combination of abundances for which species 1 shows zero
re, the population of species | increases, indi

arrow. For points to the right, the jofnt abun:

growth. For points to the left of this lir
cated by the right-pointing horizontal
dance of species 1 and species 2 exceeds the isocline for specien 1, 1o i
decreases, indicated by the left-pointing arrows,

popalation
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rying c?apacity for species 1, so N will increase. An increase in N in the state
space is represented as a horizontal arrow pointing to the right. The arrow is
horizontal because the abundance of species 1 is represented on the x axis.
Whe.n you work with state-space graphs, pay close attention to which
spec.les’ isocline you are plotting. Any point to the left of the isocline for
species 1 generates a horizontal right-pointing arrow. Under these circum-
stances, we know that species 1 has a positive growth rate, so its population
will increase in size. In contrast, if we are to the right of the isocline, the joint
abundance of Ny and N, exceeds the carrying capacity of species 1. In this
case, the growth rate of N; is negative, and the population decreases. The
dfecrease is represented as a left-pointing horizontal arrow in the state space.
Finally, if we are at a point precisely on the isocline, N neither increases nor
decreases, and there is no movement in the horizontal direction.

Now we plot the isocline for species 2 in the state space. The isocline of
species 2 intersects the y axis at a value of K; and intersects the x axis at a
value of K,/f3. The first case is one in which species 1 is absent and species 2
has grown to its carrying capacity. In the second case, species 2 is absent, and
is czllrryi.ng capacity is occupied by K;/f individuals of species 1. Once again,
the isocline for species 2 splits the state space into two regions. If we are
below the isocline, the joint abundance of species 1 and species 2 is below K,
and N, will increase. Because species 2 is on the y axis, positive growth 0;
Npecies 2 is represented as a vertical arrow pointing up in state space.
~Himilarly, if we are above the isocline, the carrying capacity of species 2 is
- ixceeded; its population decreases, represented by a downward-pointing
urow (Figure 5.4).

[t is important to recognize that there is a unique isocline for each species
that dictates its population growth. By plotting both isoclines together in the
lile space, we can understand the dynamics of two-species competition. Of
_!ulll‘HL', there are an infinite number of isoclines we could build, simply by
ning different values of Ky, Ky, @, and f. Fortunately, there are only four qual-
ﬁlﬂ\llvl y different ways we can plot the isoclines. These four patterns represent
Al four possible outcomes of competition in the Lotka—-Volterra equations.

LIRAPHICAL SOLUTIONS TO THE LOTKA-VOLTERRA COMPETITION MODEL

L0 11 Species 1 wins in competition.  Figure 5.5 shows one possible config-
iiation of the two isoclines in the state space: the isocline for species 1 lies
iiely above the isocline for species 2. In this case, the state space is split
10 threo regions. If we are in the lower left-hand region of the graph, we are
the noclines of both species, and both species can increase. This is rep-
,“d by o horlzontal and vertical arrow joined at their base. The joint
Wement of these two populations is represented by the vector sum, which
W artow that polats towards the apper right-hand corner of the graph.
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Figure 5.4 The isocline for species 2 in the Lotka—Volterra competition model. Note

that the arrows point vertically for species 2, because its abundance is measured on
the y axis of the state space graph.

Conversely, if we are in the upper right-hand region of the state space, we are
above the isoclines of both species. Both populations will decrease, and the
joint vector points towards the origin of the graph.

Things get more interesting in the interior region. Here, we are below the
isocline of species 1, so its population increases in size, and the horizontal
arrow points to the right. However, we are above the isocline of species 2, s0
its population decreases, and the vertical arrow points down. The joint vector
points down and to the right, which takes the populations towards the car-
rying capacity of species 1. Eventually, species 2 declines to extinction, and
species 1 increases to Kj. Notice that, no matter what combination of abun-
dances we start with, the arrows always point towards this outcome. If the
isocline of species 1 lies above that of species 2, species 1 always wins in com-
petition, and species 2 is driven to extinction. :

Case 2: Species 2 wins in competition. If we graph the isocline of species 2 above
that of species 1, then we reverse the conditions and species 2 wins in competi-
tion (Figure 5.6). The only difference in this graph is the vector in the nterior
region. In this case, we are above the isocline of species 1, which generates o hor
izontal arrow to the left, but we are below the isocline of species 2 which gener
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K]/a'

Figure 5.5 Case 1: Competitive exclusion of i i i

: P species 2 by species 1. The thin arrows
show the tra;ectoneg Qf each population, and the thick arrow is the joint vector of
movement. Competition results in the exclusion of species 2 and an equilibrium for
Species 1 at carrying capacity. The box indicates a stable equilibrium point.
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ates a vertical arrow pointing up. The joint vector points up and 1o the left, tak-
ing us towards the equilibrium point at Ky, with Ny going extinct.

Case 3: Coexistence in a stable equilibrium. The remaining two cases are
slightly more complex, because they involve isoclines that cross, dividing the
state space into four regions. Nevertheless, the analysis is exactly the same.
We simply plot the vectors in each of the four regions to determine the out-
come (Figure 5.7). First, note that because the two isoclines cross, there must
be an equilibrium point—the crossing of the isoclines represents a combina-
tion of abundances for which both species 1 and species 2 have achieved zero
growth. The state space analysis reveals whether that equilibrium is stable or
not.

As in our previous two examples, the region close to the origin is one of
joint growth of both populations, and the region in the upper right-hand cor-
ner of the graph is one of joint decrease. The vectors in these regions point
towards the equilibrium intersection. If we are in the region of the graph on
the lower right, we are above the isocline of species 1, but below the isocline of
species 2. Here, the joint vector points towards the center, as N decreases
along the horizontal axis and N, increases along the vertical axis. Finally, if

K/o 4

K,/B

Figure 5.7 Case 3: Coexistence in a stable equilibrium. The two isoclines cross, and
the joint vectors point in towards the equilibrium point. The equilibrium is stable
because if the populations are displaced, they will always return to their equilibri-
um sizes.

we are in the region of the graph on the upper left, we are above the isocline of
npecies 2, but below the isocline of spectes 1, and the joint vector again polnts
towards the center, T

This is a stable equilibrium in which all roads lead to Rome—no matter
what the initial abundances of the two species are, both populations will
move towards the joint equilibrium value. Although this equilibrium is stable
and both species coexist, note that each species persists at a lower abundance
than it would in the absence of its competitor. Competition reduces the pop-
ulation size of each species, but neither can drive the other extinct.

Case 4: Competitive exclusion in an unstable equilibrium.  This final case is the
one in which the isoclines cross in the opposite way (Figure 5.8). Once again,
both populations increase in the sector closest to the origin, and both popu-
lations decrease in the upper right-hand region. But the pattern changes in
the two remaining slivers of state space. In the lower right-hand region, we
are below the isocline of species 1, but above the isocline of species 2. In this
region of the graph, the populations move away from the joint equilibrium
and towards Kj. Similarly, in the fourth region of the state space, we are abooe
the isocline for N, but below that for N;. The populations move away from
the joint equilibrium and towards K.

KEDJ

Figure 5.8 Case 4: Competitive exclusion in an unstable equilibrium. The two iso-
clines again cross and form an equilibrium point. However, the joint vectors poinl
away from this equilibrium. If the populations are displaced, one species or the
other will win in competition, depending on the starting abundances.




Case 4 represents an unstable equilibrium. If the populations are displaced
from the joint equilibrium, they will eventually end up in one of the two
regions of the graph that will take them to competitive exclusion. Thus, both
species cannot persist in the long run, and one will be driven to extinction by
competition. However, the winner is difficult to predict. The population that
has a numerical advantage is the one that will probably win in competition,
but the outcome depends on the initial position in the state space, and the rel-
ative growth rates of the two competitors (r; and ;).

THE PRINCIPLE OF COMPETITIVE EXCLUSION

Now that we understand the four graphical solutions to the Lotka—Volterra
competition equations, we will take another look at the algebraic solutions.
We can reason that species 1 will always persist if it can invade under the
worst possible circumstances. The worst scenario for species 1 is that its own
abundance is close to zero (N = 0), and the abundance of its competitor is
close to carrying capacity (N, = Kj). If N; can achieve a positive per capita
growth rate [(dN;/dt)(1/N;) > 0] under these circumstances, then it should
always be able to invade (MacArthur 1972). Plugging these conditions into

Equation 5.1 gives:
dN 1 L ) K1 -0- Qsz :
[WJ[N_]) = "1["“"_*;'— Expression 5.7

Since ry is always positive, the following inequality must hold for N to
increase:
K1 —(IKZ .

@ 0 Expression 5.8
which reduces to:

Ky "

X, >o Expression 5.9

If species 1 is to successfully invade, the ratio of the carrying capacities must
exceed the competitive effect of species 2 on species 1. In other words, if
species 2 is a strong competitor, species 1 must have a relatively large carry-
ing capacity to persist.

Using Equation 5.2, we can go through a similar calculation to arrive at the
following inequality for the persistence of species 2:

K
K—i >p Expression 5.10
Flipping the inequality makes this directly comparable with Expression 5.9:

K :
> K_z Expression 5.11

A=

Table 5.1 Algebrale inequalities defining the ability of species to invade and the

~ outcome of competition in the Lotka-Volterra equations.

() = Inequality Outcome
%L =0 Species 1 invades
| K_: <a ~ Species 1 cannot invade
% < ,E13 Species 2 invades
K . ;
K—; > % o Species 2 cannot invade
(b) cies 1 i
flisaesd . Species 2 Inequality Outcome
invades invades
o 1K Species 1 wins
Yes o B K % (Casel)
il 1.5 Species 2 wins
._ .1_‘.~I0 Yes B > K, <Q (Case 2)
o 1Ky Stable coexistence
i .i_".Yes = B K © Kaed
o Tk, Unstable equilibrium
. No No B < % <o (Case 4)

Now we have expressions for whether N; will invade or not, and whether
N, will invade or not. Putting these expressions together generates four alge-
braic inequalities that define the four graphical solutions to the
Lotka—Volterra equations. For example, if species 1 can invade (K;/K; > &) ,
but species 2 cannot (1/8 < K;/K;), then we have defined the conditions for
case 1, in which species 1 always wins in competition. If both species are able
to invade, we have the stable coexistence of case 3, whereas if neither species

~ can invade, we have the unstable equilibrium of case 4 (Table 5.1).

These inequalities give us insight into one of ecology’s enduring proverbs,
the principle of competitive exclusion. Briefly stated, the principle is that
“complete competitors cannot coexist” (Hardin 1960). In other words, if
species are able to coexist, there must be some difference between them in

- resource use (Gause 1934).

If two species are very similar in their resource use, then & and 8 should

 be very close to 1. Suppose, for example, that o/ = 8 = 0.9. From the inequal-
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ity in Table 5.1, coexistence of these species requires that:

1y

09> 24 >09 Expression 5.12
Ky .
L1>2-> 0.9 Expression 5.13
2

Thus, if the species are very similar in their use of resources, there is only a
narrow range of carrying capacities that will ensure stable coexistence. In
contrast, suppose that o = # = 0.2, indicating that species differ greatly in their
use of common resources. In this case, coexistence will occur if:

Ky : :
5> E >0.2 Expression 5.14

In this case, the two species will coexist with a wide range of possible carry-
ing capacities. Thus, our analysis of the Lotka—Volterra equations allows us to
refine the competitive exclusion principle: the more similar species are in
their use of shared resources, the more precarious their coexistence.

The Lotka-Volterra equations are the simplest two-species model of com-
petition. As you might expect, it is even more difficult to obtain coexistence of
species in models that have three or more competitors. For many years, ecol-
ogists have studied the “coexistence problem,” and discovered that species
often coexist in nature with little apparent difference in resource exploitation.
In these circumstances, one or more of the following assumptions of the
model has been violated.

Model Assumptions

As in the logistic and exponential growth models, we assume there is no age
or genetic structure to the populations, no migration, and no time lags. The
following assumptions also apply to the Lotka—Volterra model:

v Resources are in limited supply. The result of resource limitation is both
intra- and interspecific competition. If resources are not limiting, then an
infinite number of species can coexist, regardless of how similar they are
in resource use.

v Competition coefficients (c and B) and carrying capacities (K; and K3)
are constants. If these parameters should change with time or density, it
may be difficult to predict species coexistence.

v Density dependence is linear. Adding an individual of either species
produces a strictly linear decrease in per capita population growth rate.
This is reflected in the linear isoclines of the Lotka—Volterra model.
Models with nonlinear isoclines have more complex stability properties
that are not easy to deduce from simple state-space graphs.

Model Variations

INTRAGUILD PREDATION

licologists classify species interactions according to their effects on popula-
tion growth rate. Thus, competition is defined as both species having a net
negative effect on one another (-,—), mutualism as both species having a net
positive effect (+,+), and predation or parasitism as one species gaining and
the other species losing (+,—-). These classifications are convenient and nat-
ural, and they reflect our model assumptions that interaction coefficients are
constant and that there is no age structure in the populations.

But when we study the natural history of many animals, we find they can-
not be classified simply as “predators” or “competitors.” For example, lions
prey on the young of cheetahs, wild dogs, and spotted hyenas, but also com-
pete with these same species for prey. Flour beetles in the genus Tribolium
compete for food, but at high densities they also consume one another’s lar-
vae. For many predators, diet is determined strictly by their size and what
they can get their jaws around. As individuals age, their diets can change rad-
ically. Anyone who has tried to raise baby fish in an aquarium can appreciate
that predation is often critically tied to body size. Individuals of a single
species may act as prey, competitors, or predators, depending on their age
and size. Intraguild predation (IGP) is the ecological interaction in which two
competing species also interact as predator and prey. IGP is not an isolated
phenomenon; it is common in terrestrial, marine, and freshwater communi-
ties, and probably represents the rule rather than the exception in nature
(Polis et al. 1989).

How can we modify our simple competition model to take account of IGP?
Suppose that two species compete according to the Lotka-Volterra equations,
but species 1 is also a predator on species 2. This is a simple model that does
not involve age structure, reciprocal predation, or cannibalism. However, it
at least illustrates the way that IGP can modify ecological interactions. The
growth equation for species 1 (“predator”) is:

dfi\:l i f‘lNl(E“]:—Nj'(li‘_“Ey"z'} +y NNy Equation 5.7

—




This is identical to the original Lotka-Volterra model, except we have added
an additional term. This addition represents the increase in growth rate that
species 1 receives by feeding on species 2. The amount of this increase
depends on the abundances of predator and prey (N;N,) and an interaction
coefficient (y). We will see a similar expression in Chapter 6 when we build a
predator-prey model. The growth equation for species 2 (“prey”) is:

ddNt 5 N, [,I_(_Z_:_I\%(Z:_E&] -8N;N, Equation 5.8
2

Again, growth of species 2 is described by the Lotka—Volterra model, but is
further reduced because of losses due to predation by species 1. These losses
also depend on the abundances of predator and prey (N1N) and an interac-
tion coefficient (). Note that the interaction coefficients for predator (y) and
prey (6) need not be equivalent. The loss of an individual to predation usual-
ly does not correspond to a symmetrical gain for the predator population.
Again, these ideas are explored more thoroughly in Chapter 6.

How does IGP affect the coexistence of species? The graphical effect of IGP
is to rotate the isoclines. IGP does not change the carrying capacity for either
predator or prey. Instead, it changes the abundance of the competitor that is
necessary to cause extinction. Consequently, each isocline is rotated up or
down, but remains fixed at the intercept on its own axis. For the predator, the
isocline swings up, because it now requires more competitors to drive the
predator to extinction than before (Figure 5.9a). For the prey species, IGP
swings the isocline in towards the origin, because it now requires fewer com-
petitors to cause extinction (Figure 5.9b).

IGP can either reinforce or reverse the outcome of competition, depending
on the position of the isoclines and the amount of rotation (which is ultimate-
ly controlled by the interaction coefficients). For example, if the inferior com-
petitor is also the prey species, IGP merely adds the insult of predation to the
injury of competition and reinforces the extinction of species 2 (Figure 5.10a).
But if the inferior competitor is the predator, IGP can change the outcome from
competitive exclusion (case 1) to stable coexistence (case 3; Figure 5.10b).
Other outcomes are possible, and IGP may provide insight into species coex-
istence when simple competition and predation models fail (Polis et al. 1989).

Empirical Examples
COMPETITION BETWEEN INTERTIDAL SANDFLAT WORMS

In northern Puget Sound, many species of marine worms coexist in intertidal
sandflats at very high densities. Abundances can be manipulated experi-
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Figure 5.9 (a) Intraguild predation rotates the isocline of the “predator” species up,
because it now requires more individuals of the competitor-prey to drive it to
extinction. (b) Intraguild predation rotates the isocline of the “prey” species down,
because it now requires fewer individuals of the competitor-predator to drive it to
extinction.

mentally, allowing for a direct test of the Lotka—Volterra competition model.
Gallagher et al. (1990) examined competition between juveniles of the poly-
chaete Hobsonia florida and a number of closely related species of oligochaetes.
Both Hobsonia and the oligochaetes coexist in dense aggregations in nature
and feed on benthic diatoms. :




Gallagher et al. (1990) used field experiments to determine whether such
coexistence could be successfully predicted by the Lotka-Volterra model. By
adding predatory shrimp to small (26-centimeter diameter) field enclosures,
the authors were able to manipulate the densities of Hobsonia and the
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Figure 5.10 (a) Intraguild predation reinforces competitive exclusion. In this exam-
ple, the superior competitor (N1) is also the predator, so the shifted isoclines lead to
the same outcome. (b) Intraguild competition reverses competitive exclusion. In this
example, the inferior competitor (N;) is now the predator. The isoclines shift from
competitive exclusion (Case 1) to stable coexistence (Case 3).

oligochactes in the patch, These starting densities represented a single point
in the state space. Next, they measured the increase and decrease of each pop-
ulation in the patch after three days. These changes revealed the vector of
population dynamics in the state space. By repeating this procedure for dif-
ferent starting densities, they were able to determine the placement of both
isoclines. These field experiments produced the following estimates: Ky
(Hobsonia) = 64.2, a = 1.408; K; (oligochaetes) = 50.7, B = 0.754. Finally, the
authors started two patches at a low initial abundance of both competitors
and then followed their dynamics for 55 days.

The isoclines for both species are plotted in Figure 5.11. Superimposed on
this state space is one of the trajectories for the 55-day experiment. Because
the isocline for the oligochaetes lies slightly above the isocline for Hobsonia,
the model predicts that the oligochaetes should win in competition. But the
trajectory of the 55-day experiment did not reach the oligochaete carrying
capacity, and in nature, both species coexist. The simple Lotka-Volterra
model must be rejected for this system.

Why did the model fail to give us the correct predictions? Because the iso-
clines of the two species are very close to one another, the predicted time to

Oligochaetes per 0.95 cm?

Hobsonia florida per 0.95 cm®

Figure 5.11 Competition between marine intertidal worms. The solid line is the esti-
mated isocline for Hobsonia florida, and the dashed line is the estimated isocline for
the oligochaetes. The line segments trace an experiment in the state space that was
started with low abundances of both competitors. The numbers indicate the number
of days since the start of the experiment. (From Gallagher et al. 1990.)
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extinction is long. Moreover, there are seasonal changes in diatom abundance,
so that the carrying capacities for each species are always changing. When
carrying capacities change, the isoclines “wobble” through time, so that pop-
ulation trajectories may be continually changing. Under these conditions,
there may not be enough time for one species to win in competition. Thus,
the oligochaetes do not competitively exclude Hobsonia because the environ-
ment is always changing. As the ecologist G. Evelyn Hutchinson (1967)
wrote: “The competitors of a given genus or other higher taxon are from time
to time lined up, and sometimes the race begins, but as it might be in the
works of Lewis Carroll, the event is always called off before it is completed
and something entirely different is arranged in its place.”

THE SHAPE OF A GERBIL ISOCLINE

Gerbils are mouselike rodents of the deserts of Africa and the Middle East.
They are nocturnal seed foragers, and the coexistence of several gerbil species
may depend on their use of common food and habitat resources. Abramsky
et al. (1991) studied the coexistence of Gerbillus allenbyi and G. pyramidum in
the western Negev desert of Israel.

Experimental studies of vertebrate competition are particularly difficull
because of the large areas needed to enclose populations, and because com-
petition is often mediated by subtle behavioral interactions. Abramsky et al.
(1991) took advantage of the fact that G. pyramidum is considerably larger than
G. allenbyi (mean mass = 40 grams versus 26 grams). The authors built enclo-
sures that were 100 meters on a side (one hectare in area). Each enclosure was
separated into two plots by a common fence. This fence had small gates to per
mit gerbils to move between the two sides. The gates were large enough o
allow G. allenbyi through, but too small for G. pyramidum to pass. Thus, the
fence acted as a semipermeable membrane, allowing G. allenbyi to “equili
brate” its density on the two sides based on the density of G. pyramidum.

Although the Lotka—-Volterra competition model predicts changes in pop
ulation growth rate, these are difficult to measure in short-term experimen s
on vertebrates. Moreover, the effects of competition on gerbil populations are
likely to be expressed more immediately in changes in behavior and foray,
ing activity. Instead of measuring gerbil density, the authors measured the
“activity density” of each species by counting gerbil footprints in clean trays
of sand that were placed in the plots each night. This index was correlated
with density and foraging activity of individual gerbils.

The authors established one half of each enclosure with a high density of
G. pyramidum and the other half with a low density. The density of G, allenbyl
was allowed to equilibrate to these differences in competitor density. The
resulting changes in activity of both species can be plotted in state space
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~ Hgure 5.12 Results of gerbil competition experiments plotted in state space. Each

line segment connects the points for the high-density and low-density plots in an
:.l‘lj'u!rh.nm'n_ tal enclosure. Most of the segments have a negative slope, indicating a
toduction in the activity density of Gerbillus allenbyi (y axis) in the presence of its

Lompetitor G, pyramidum (x axis).

Lach line segment in this graph represents the activity density in the two
Iven of an enclosure, The slope of this line segment is a measure of the iso-

e of G, allenbyi in that area of the state space (Figure 5.12). Although there

Onulderable scatter in the data, most of these segments have a negative

lopo, ,llnd!lc't:l'lnu that high densities of G. pyramidum depressed the activity
Goallenby,
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Figure 5.13 shows the isocline based on the “best fit” of all these line seg-
ments. In contrast to the predictions of the Lotka—Volterra model, the isocline
for G. allenbyi is nonlinear, with steep declines at high and low densities of G.
pyramidum, but a shallow slope at intermediate competitor densities.

Why isn’t the isocline of G. allenbyi a straight line? The answer is that activ-
ity density depends not only on the abundance of competitors, but also on
the availability and use of different habitats. In the Negev Desert, there are
two habitat types that the gerbils use. “Semistabilized dunes” contain little
perennial vegetation, many open patches of sand, and unstabilized sand
dunes. “Stabilized sand” habitats are dominated by dense shrub cover, with
large areas of stable soil crust and few open patches. Both habitat types were
present in approximately equal abundance within each enclosure.

Under uncrowded conditions, both gerbil species preferred the semistabi-
lized dunes. As intraspecific density increased, both species began to use the
stabilized sand in greater frequency. G. pyramidum density induced a habitat
shift in G. allenbyi, and this was responsible for the nonlinear isocline.
Superimposed on the state space in Figure 5.13 are four lines (“isolegs”) that
are cutpoints for changes in habitat use of the two species. At low densities
(regions I and II), both species preferred the semistabilized dunes, and
increased densities of G. pyramidum led to a sharp decrease in the activity
density of G. allenbyi. As the density of G. pyramidum increased, G. allenbyi
did not decrease its activity, but instead shifted into the less preferred stabi-
lized sand habitat. Consequently, the isocline is relatively flat in this region,
reflecting habitat shift, rather than a reduction in activity density. But as its
density increased, G. pyramidum was also forced to use the stabilized sand
habitat. At high densities of G. pyramidum, G. allenbyi could no longer
“escape” competition by moving to an unoccupied habitat, so activity densi-
ty again dropped off steeply. Additional field experiments measured the iso-
cline of G. pyramidum (Abramsky et al. 1994), and a mathematical analysiy
predicts stable coexistence of both competitors.

The Lotka-Volterra model generates simple predictions and provides a
framework for field tests of competition. Nevertheless, it is very difficull o
manipulate species densities in realistic field experiments, and it is still an
open question as to whether resources are limiting. These studies show thal
even when resources are limiting, the model’s simple predictions may fail
because factors such as variable environments and habitat selection can also
affect the outcome of interspecific competition.
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~ Hgure 5.13 The isocline for Gerbillus allenbyi, estimated from the data in Figure 5.12.
- Note that the isocline (thick line) is not linear, but has a region of shallow slope at
Intermediate densities of G. pyramidum. This nonlinear isocline reflects the effects of
tampetition and habitat selection. The thin lines divide the state space into regions
Baned on habitat use. Region I: Both species use the preferred habitat, semistabilized
Aine, Region 11: G, allenbyi is forced to use the less preferred habitat, stabilized sand.
Hegion 111 Increased use of the stabilized sand by G. allenbyi. Because G. allenbyi

W Lo s |l'HHI preferred habitat, its activity density can remain high, leading to a
Hillow slope for the isocline in this region of the state space. Region IV: G. pyra-
it torced into the stabilized dune habitat by intraspecific competition.

e Coallenbyl no longer has an escape to the unoccupied habitat, its activity
Wity drops off sharply With fnereases (n the activity density of G. pyrantidun,
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Problems

5.1.

52.

You are studying competition between red and black desert scorpions.
For the red scorpion, K; = 100 and & = 2. For the black scorpion, K; = 150
and f§ = 3.

Suppose the initial population sizes are 25 red scorpions and 50 black
scorpions. Graph the state space and isoclines for each species, and plot
these initial population sizes. Predict the short-term dynamics of each
population and the final outcome of interspecific competition.

Suppose that, for two competing species, o = 1.5, f = 0.5, and K = 100.
What is the minimum carrying capacity for species 1 that is necessary for
coexistence? How large is the carrying capacity needed for species 1 to
win in competition?

*5.3. Diagram the state space for two competing species in which there is a sta-

ble equilibrium. Show how intraguild predation could shift this to exclu-
sion by the predatory species.

* Advanced problem




