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Model Presentation and Predictions

In Chapters 1-3, we explored several models of population growth. These
models differed in their major assumptions: unlimited resources (Chapter 1)
versus a finite carrying capacity (Chapter 2), and a homogenous population
(Chapter 1) versus an age-structured one (Chapter 3). All of these models
described a closed population. In other words, the population changed size
because of births and deaths that occurred locally. We explicitly assumed that
individuals did not move between populations.

This assumption of a closed population was mathematically convenient,
but not biologically realistic. For migratory animals, such as North American
songbirds that overwinter in the tropics, or oceanic salmon that spawn in
freshwater streams, the seasonal movement of individuals is the dominant
cause of population change. Many nonmigratory species also move between
populations. In particular, organisms with complex life histories often have
seeds or larvae that are adapted for movement to new populations. The
ascidians described in Chapter 2 are a good example. The adults are filter-
feeding invertebrates that attach permanently to rock walls, but the “tadpole”
larvae are free-swimming and drift in the current for several days before set-
tlement and metamorphosis. Consequently, the “births” in a local ascidian
population consist of juveniles that originated from many ditferent sites.

The movement of individuals between populations may be density-depen-
dent. In territorial species, such as black-throated blue warblers (Dendroica
caerulescens), not all individuals are able to establish territories, and those that
do not may migrate in search of less crowded populations. Mathematical
models that ignore the biology of animal and plant movement mayv not give
an accurate description of population dynamics.

In this chapter, we will develop a class of simple models that takes into
account the fact that individuals do move among sites and that such move-
ment is potentially important to the persistence and survival of populations.
This chapter explores the concept of a metapopulation. The metapopulation
can be thought of as a “population of populations” (Levins 1970)—a group
of several local populations that are linked by immigration and emigration.

In order to study metapopulations, we need to make two important shifts
in our frame of reference. The first shift concerns how we measure popula-
tions. In Chapters 1-3, our models predicted the size of a population—the
number of individuals at equilibrium. Our metapopulation models will not
predict the size of a population, but only its persistence. Thus, the range of
numbers representing population size will be collapsed to only two possible
values: 0 (local extinction) or 1 (local persistence). We will no longer distin-
guish between large and small populations, or between populations that
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cycle, fluctuate, or remain constant. Instead, the only distinction is between
populations that persist and those that go extinct.

The second shift concerns the spatial scale at which we study populations.
[n Chapters 1-3 we emphasized equilibrium solutions for population size,

- implicitly focusing on local populations that persisted through time. In con-

trast, the metapopulation perspective is that local populations frequently go
extinct, and that the appropriate spatial scale for recognizing an equilibrium
is the regional or landscape level, which encompasses many connected sites.
At this scale, we will no longer focus on the persistence of any particular pop-
ulation. Instead, we will build a model that describes the fraction of all pop-
ulation sites that are occupied. Thus, we will ignore the fate of individual
populations and model the extent to which populations fill the landscape.
This large-scale view will allow us to use simple mathematics and avoid the
complexities of trving to explicitly model local population size and individual
migration. As an analogy, if we were modeling the dynamics of a busy park-
ing lot, we would try to predict how many parking spaces were filled, not
which particular spaces were occupied.

METAPOPULATIONS AND EXTINCTION RISK

The metapopulation perspective allows us to make a distinction between
local extinction, in which a single population disappears, and regional extinc-
tion, in which all populations in the system die out. Even if populations are
not connected by migration, the risk of regional extinction is usually much
lower than the risk of local extinction.

To explore this concept quantitatively, we can define p, as the probability of
local extinction—that is, the probability that the population in an occupied
patch goes extinct. This probability is a number that ranges between 0 and 1.
It p. = 0, persistence is certain, whereas if p. =1, extinction is certain. All pop-
ulations go extinct in the long run, so probabilities of extinction must be mea-
sured relative to a particular time scale. For metapopulation dvnamics, the
appropriate time scale is often vears or decades. :

Suppose that p. = 0.7, for probabilities measured on a yearly time scale. This
means there is a 70% chance (100 % 0.7) that a population will go extinct during
a single year, and a 30% chance that it will persist (1 - p, = 0.3). What are the
chances that the population will persist for two years? The probability of per-
sistence for two vears is the probability of no extinction in the first year (1-p.)
multiplied by the probability of no extinction in the second year (1 - p,). Thus:

P, = (1‘Pe )(1‘]73) = (1-;7@\)2 Expression 4.1

i
The probabilitv that a population will persist for i1 years (P,) is the probabil-
it of no extinction for 1 years in a row:



84 CHAPTER 4: METAPOPULATIONS

| B, =(1-p.)" "7 Equation4.1

For example, if p, = 0.7, and n =5, P, = (1 -0.7)> = 0.00243. So, if there is a 70%
chance that a population goes extinct in one year, the chance of persistence
for five years in a row is only 0.2%.

Now suppose that instead of a single population, we have two identical
populations, each with a p, of 0.7. For now, we assume that these populations
are independent of one another—the chance of extinction in one patch is not
affected by the presence or absence of populations in other patches. For this
pair of populations, what is the probability of regional persistence, that is,

“what are the chances that af least one population persists for one year? The
probability of regional persistence for one year (P,) is 1 minus the probability
that both patches go extinct during the year:

P =1-(p,)pe)=1-(r.) Expression 4.2

The probability of regional persistence in a set of x patches is the probability
that all x patches do not go simultaneously extinct:

P =1-(p,)" Equation 4.2

Thus, if we had 10 patches, each with p, = 0.7, the probability of regional per-
sistence is Pjp = 1 = (0.7)1% = 0.97. In other words, with 10 patches, there is a
97% chance that at least one population will persist, even though it is likely
that any particular population will go extinct (p, = 0.7)! Figure 4.1 shows that
P, increases rapidly as more patches are added, although there is an overall
decrease as p, is increased.

Equation 4.2 illustrates an important principle: multiple patches “spread
the risk” of extinction. Even if individual populations are doomed to extine-
tion, a set of populations can persist for a surprisingly long time. In the next
section, we will build metapopulation models in which these local popula-
tions are linked to one another, so that probabilities of local extinction and
local colonization depend on patch occupancy.

A MODEL OF METAPOPULATION DYNAMICS

Imagine a set of homogenous patches, each of which can be occupied by a single
population. Let f equal the fraction of sites occupied, that is the proportion of
patches that contain populations. Thus, fis a number constrained between 0 and
1.If f=1, all sites are occupied by populations, and the landscape is saturated. If
f=0, all sites are unoccupied, and the metapopulation is regionally extinct.
How does f change with time? f can increase if empty sites are successful-
ly colonized. Let I = the immigration rate: the proportion of sites successfully
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Figure 4.1 The relationship between the probability of regional persistence (P,), the
rrobability of local extinction (p.), and the number of populations (x). Note that as
the number of populations is increased, the probability of regional persistence is
substantially higher, for a given probability of local extinction.

colonized per unit time.” f can also decrease if occupied sites undergo extinc-
tion. Let E = the extinction rate, that is, the proportion of sites that go extinct
per unit time. The change in fis determined by the balance of gains from col-
onization and losses from extinction:

af _
—=I-E

There is a close analogy between Expression 4.3 and our initial derivation of the
exponential growth model in Chapter 1 (Expression 1.5). In the exponential
growth model, there was continuous turnover of individuals from births and
deaths. Population size (N) reached an equilibrium only if the birth rate pre-
cisely equaled the death rate. Similarly, at the metapopulation level, there is con-
tinuous turnover of individual populations through colonization and extinction.
The fraction of population sites ( f) reaches an equilibrium when the immigra-
tion rate precisely equals the extinction rate. We will see this same derivation
once more in Chapter 7, when we model the number of species in a community.

Expression 4.3

. g

“Technically, we should refer to this as the colonization, not the immigration, rate, but we use
this terminology for consistency with the MacArthur-Wilson model, which is developed in
Chapter 7. '
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We now wish to describe the immigration and extinction functions in more
detail. The immigration rate depends on two factors. First is the probability of
local colonization, p;. If each site is colonized independently, this probability
will depend only on the physical and biological conditions within a patch.

Many factors can affect p;, including patch area, the availability of critical

Equation 4.3 is a simple model of metapopulation dynamics that will serve
as a template for developing alternative models. By changing some of our
assumptions about colonization and extinction processes, we can generate
new metapopulation models that make different predictions about the frac-
tion of sites occupied at equilibrium (f). Before exploring these variations,

habitats and food resources, and the absence or scarcity of predators,
pathogens, and competitors.

The probability of local colonization can also be affected by factors that are
external to the site. Specifically, if the sites are linked by migration, the prob-
ability of colonization may depend on the presence of populations in other
sites. In other words, when many sites are occupied (large f), there are many
individuals migrating, so the probability of colonization is higher than when
few sites are occupied (small f). Therefore, p; will depend onf. In the follow-
ing sections, we will develop models in which p; is either dependent or inde-
pendent of f (Gotelli 1991).

The immigration rate depends not only on p;, but also on the availability of
unoccupied sites, which is measured by (1 ~ f). The more sites available for
colonization, the faster the overall immigration rate. Thus, the immigration
rate is the product of the probability of local colonization (p;) and the fraction
of unoccupied sites (1 - f):

I=p(1~f) Expression 4.4

The immigration rate will equal zero in two cases: first, if the probability of
local colonization is zero (p; = 0); and second, if all the sites in the metapopu-
lation are occupied (f=1).

If we follow a similar line of reasoning, the extinction rate, E, is the product
of the probability of local extinction {p,) and the fraction of sites occupied (f):

E=p,f Expression 4.5

The extinction rate equals zero if the probability of extinction is zero (p, = 0), or
if none of the sites in the metapopulation is occupied (f = 0). Substituting
Expressions 4.4 and 4.5 back into 4.3 gives us a general metapopulation model:

d
fiit =pil=f)-pef Equation 4.3*

*Because this is a continuous differential equation, p; and p, are technically not probabilities, but
fractional rates. However, p; and p, behave as probabilities when they are multiplied by a finite
time interval. Over such a time interval, we would need to add a correction term to Equation 4.3
to account for the chance that an occupied patch could undergo an extinction and a recoloniza-
tion (Rav et al. 1991). However, the correction term is small, and it is simpler tc use the continu-
ous differential equaiion and to interpret p; and p, as immigration and extinction probabilities.

we will first examine the general assumptions of this model.

Model Assumptions

Equation 4.3 makes the following assumptions:

v Homogenous patches. The population sites must not differ in their size,
isolation, habitat quality, resource levels, or other factors that would
affect the probability of local colonization and local extinction.

v No spatial structure. The model assumes that probabilities of coloniza-
tion and extinction may be affected by the overall fraction of occupied
sites (f), but not their spatial arrangement. In a more realistic metapop-
ulation model, the probability of colonization for a particular site would
depend on the occupancy of close neighboring patches, rather than on
the overall f. This sort of “neighborhood” model can be studied by com-
puter simulation or by using equations of diffusion, in which the spread
of populations through empty sites is analogous to the dispersion of an
ink droplet through a beaker of water.

v No time lags. Because we are describing metapopulation dynamics with
a continuous differential equation, we assume that the metapopulation
“growth rate” (df/dt) responds instantly to changes in f, p;, or p..

v Constant p, and p;. The probabilities p, and p; do not change from one
time period to the next. Although we cannot say precisely which popu-
lations will go extinct and which will be colonized, the probabilities of
these events do not change.

v Regional occurrence (f) affects local colonization (p;) and extinction (p,.).
Except for the basic island—-mainland model (see below), metapopula-
tion models assume that migration is substantial enough to affect local
population dynamics and influence probabilities of colonization and/or
extinction. Consequently, p; and/or p, are functions of f.

v Large number of patches. The fraction of occupied sites in our model can
become infinitely small, and the metapopulation will still persist. Thus,
we are not assuming any demographic stochasticity (see Chapter 1) of
the metapopulation due to small patch numbers.
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Model Variations

THE ISLAND-MAINLAND MODEL

The simplest model for our metapopulation is that both the p; and p, are con-
stants. If p, is a constant, the probability of extinction is the same for each
population and does not depend on the fraction of patches occupied. This
assumption is analogous to a density-independent death rate in a population
growth model, because the death rate does not depend on population size
(see Chapter 2). Similarly, the probability of colonization may be fixed.
Constant p; implies a propagule rain—a continuous source of migrants that
could potentially colonize an empty site (Figure 4.2a). If there is a large, stable
“mainland” population, it may generate a propagule rain for a set of
“islands” in the metapopulation. A propagule rain may also characterize
some plant populations that may be colonized by a seed bank of long-lived
buried seeds. The equilibrium value of f for this island-mainland model can be
found by setting Equation 4.3 equal to zero and solving for f:

0=pi-pif -p.f Expression 4.6
piftpef=pi Expression 4.7
Dividing both sides of Expression 4.7 by (p; + p.) gives f, the equilibrium for f:

f = p-;j-ip Equation 4.4
1 4

In the island-mainland model, the fraction of sites occupied at equilibrium
is a balance between extinction and immigration probabilities. Notice that
even if the probability of extinction (p.) is very large and the probability of
colonization (p;) is very small, at least some of the sites in the metapopula-
tion will be occupied (f > 0),'because the metapopulation is continually
replenished by the external propagule rain.

INTERNAL COLONIZATION

Now we will relax the assumption of the propagule rain and instead imagine
that the only source of propagules for the metapopulation is the set of occu-
pied population sites (Figure 4.2b). In other words, there is internal coloniza-
tion such that:

pi=if Expression 4.8

The constant 7 is a measure of how much the probability of colonization of
empty sites increases with each additional patch that is occupied. In this
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Figure 4.2 (a) Colonization in the island-mainland model. Colonists for a set of
islands always come from a large mainland area. Open islands represent empty sites
and filled islands represent sites that contain populations. (b) Colonization in the
internal model. Colonists do not originate from a permanent external source, but
instead originate only from currently occupied islands.

model, each population contributes individuals to a pool of propagules,
which then have the potential to colonize unoccupied sites. Note that if all of
the populations go extinct (f = 0), the probability of colonization goes {o zero
because there is no other source of colonists. This condition is in contrast to
the island-mainland model, in which colonists were always present because
of the external mainland population.

Assuming that the extinctions are still independent and substituting
Expression 4.8 back into the general model (Equation 4.3) gives (Levins 1970):

Z—{ =1f(1- )= pof Equation 4.5

Again, we set this equation equal to zero and solve for the equilibrium f-
p.f=if(1-f) Expression 4.9
) |
Pe=i-if Expression 4.10

if =i-p, ~ Expression 4.11
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Dividing both sides by i yields:
F=1- Hzi ' Equation 4.6

In contrast to the predictions of the island-mainland model, persistence of
the metapopulation (f > 0) is no longer guaranteed. Instead, the metapopu-
lation will persist only if the strength of the internal colonization effect (1} is
greater than the probability of local extinction (p,). If this condition is not met,
the metapopulation will go extinct (f < 0). Extinction can happen because the
metapopulation is no longer receiving the benefit of external colonjzation.

THE RESCUE EFFECT

Qur first two metapopulation models (island-mainland and internal colo-
nization) both assumed that the probability of extinction was independent of
the fraction of sites occupied. Now we should consider the possibility that
extinction might be affected by f. How might this happen? As before, we
assume that each occupied site produces an excess number of propagules that
leave the site and arrive at other populations. If the propagules arrive at an
empty site, they represent potential colonists. If conditions are good, these
propagules may be able to establish a breeding population in the site. But
migrants may also arrive at occupied sites and increase the size of established
populations. This increase in N is a rescue effect that mayv prevent the local
population from going extinct due to demographic and environmental sto-
chasticity (see Chapter 1). The rescue effect is defined as the reduction in the
probability of extinction that occurs when more population sites are occupied,
and hence more individuals are available to boost local population sizes.

The tradeoff of propagules leaving a site and those entering from other
sites cannot be strictly linear. Otherwise, it would not be possible to achieve a
rescue effect—thé réduction in ps due to immigration would be canceled by
the increase in p, due to emigration. However, the loss of some individuals
as migrants may have a negligible effect on p,. In fact, if migration is density-
dependent, individuals that do not migrate to other population sites might
reproduce or survive poorly in their sites of origin. An explicit model of the
rescue effect would need to include parameters for N, p,, and migration. But
we can capture the essence of the rescue effect in our simple metapopulation
model by assuming that:

pe=e(1-f) Expression 412

Expression 4.12 says that the probability of local extinction decreases as more
population sites are cccupied. e is a measure of the strength of the rescue
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effect, because it controls how much p. decreases with the addition of anotii-
er occupied site. Notice that if all population sites are occupied (f = 1), the
probability of local extinction is zero. This is unrealistic, because even in a
saturated landscape there should be some intrinsic background extinction
risk. But we would have to introduce another parameter into the model to
account for background extinction, so instead we will use Expression 4.12 (o
keep things simple. Assuming an external propagule rain and a rescue effect,
we substitute Expression 4.12 into the general model (Equation 4.3):

q
Hff =p(1=H—ef(1-f) - Equation 1.7

As before, we set Equation 4.7 equal to zero and then solve for the equilibri-
um value of f2

ef(1-f)=p:i1-1)

Expression 4.13

ef = p; Expression 4.14
Dividing both sides by e gives:

f = Eei— Equation 4.8

As in our original island-mainland model, persistence of the metapopulation
is assured when there is both a propagule rain and a rescue effect. In fact, il
the extinction parameter (¢) is less than the probability of colonization (p,),
the metapopulation will be saturated at equilibrium, and all population sites
will be occupied {(f=1.

OTHER VARIATIONS

One final variation based on our simple metapopulation model would be to
combine internal colonization with the rescue effect. In this case, the
metapopulation is entirely closed to outside influences; both colonization and
extinction probabilities are a function of the fraction of sites occupied. The
equation for this model comes from substituting Expression 4.8 (internal col-

onization) and Expression 4.12 (rescue effect) into Equation 4.3 (the general
model):

1 | :
—Zit =if(1-H—ef(1-f) Equation 4.9



However, if you try to set Equation 4.9 equal to zero and then solve for f, you
will find there is no simple solution. Instead, the “equilibrium” depends on
the relative sizes of i and e. If i > ¢, the immigration rate [if(1 - )] will always
be greater than the extinction rate [ef(1 - )], so the metapopulation will
“erow” until f = 1 (landscape saturation). Conversely, if e > i, the extinction
rate exceeds the immigration rate, and the metapopulation will contract until
f =0 (regional extinction). If i and e vary stochastically, the metapopulation
may fluctuate between these two equilibrium points (Hanski 1982). Finally,
if i equals e, f will not change because the immigration rate will always equal
the extinction rate. If some external force changes f, it will then stay at this
new equilibrium value. We refer to this as a neutral equilibrium.

The metapopulation models that we have considered here have treated
colonization as either internal or external. Similarly, extinctions were either
independent or mediated by a rescue effect (Table 4.1). These four alterna-
tives actually represent endpoints of a continuum. Colonization in most
metapopulations is probably both from propagules generated from within
the system and from propagules derived from external “mainland” sources.
Similarly, there are extrinsic and intrinsic forces leading to extinction. These
factors can be incorporated into a more general metapopulation model,
which includes the four models developed in this chapter as special cases
(Gotelli and Kelley 1993).

The derivations presented here just scratch the surface of metapopulation
models (Hanski and Gilpin 1991). Other metapopulation models predict N
directly, rather than just the presence or absence of populations.
Metapopulation models have also been extended to two-species models of
competitors or predator and prey. In some cases, species may coexist region-
ally that cannot coexist locally in closed populations. In other instances,
exposing local populations to competitors or predators can lead to extinctions
that might not have occurred otherwise. In Chapter 7, we will again return
to a discussion of “open” systems when we model the colonization of an

Table 4.1 Four metapopulation models (Gotelli 1991).

Extinction

Independent Mediated by rescue effect

External d—f=p~(1 “f)=pof

i
Y - —ef(l—
(“propagule rain”)  dt i pi(l-f)—ef(1-f)

Internal

Colonization

i _, Y it —f)—efi -
Loifa-p-pf  G=F0-H-ef1-P

——

island by an entire community of species. For now, we will return to our sim-
ple models of local populations and incorporate the effects of competitors
(Chapter 5) and predators (Chapter 6).

Empirical Examples

THE CHECKERSPOT BUTTERFLY

Populations of the bay checkerspot butterfly (Euphydryas editha bayensis)
vccur in discrete patches that seem to be organized into a large metapopula-
tion. The butterfly is somewhat of a habitat specialist; adult butterflies emerge
in spring, and females prefer to lay their eggs on the annual plantain Plantago
crecta. This host plant serves as a food source for the caterpillars, which feed
for one or two weeks and then enter a summer diapause, or resting stage.
Caterpillars resume feeding during the cool, rainy months of December to
February, and then build cocoons. P. erecta grows in Northern California
grasslands on serpentine soil rock outcroppings, which serve as potential
population sites (Figure 4.3). Populations of the checkerspot butterfly have
been studied in this area for over 30 years (Ehulich et al. 1975).

Fluctuations in the weather can disrupt the life-cycle synchrony of the but-
terflv and its host plant, leading to local extinction. For example, at least three
butterfly populations are known to have gone extinct following a severe
drought in 1975-1977 (Murphy and Ehrlich 1980). Very small populations
recorded in 1986 may represent successful recolonizations of empty sites
(Harrison et al. 1988). The Morgan Hill site is a large patch of serpentine soil
that supports a population of hundreds of thousands of butterflies. Because of
its large size and the topographic diversity of the site, this population survived
the drought and probably served as a source of colonists for empty patches.

The checkerspot metapopulation is similar, in some respects, to the
island-mainland model, in which there is a persistent, external source of
colonists. Although our simple metapopulation models assumed that all
patches were identical, this was clearly not the case for the checkerspot but-
terfly. Populations were more likely to be found in sites that were close to the
Morgan Hill population, had large areas of cool, north-facing slopes, and
high densities of appropriate host plants (Hatrison et al. 1988). For conserva-
tion purposes, preservation of the Morgan Hill population is probably essen-
tial because it provides colonists for other patches.

By their very nature, metapopulation studies require access to a lot of land.
Although researchers have studied the checkerspot metapopulation for sev-
eral vears, work on many of the smaller patches can no longer be carried out.
Attitudes of western land owners have changed; many are no longer willing
to allow biologists onto their property to census the checkerspot butterfly
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Figure 4.3 Distribution of serpentine soil grasslands in Santa C_lara ACounty,
California. These habitat patches function as potential population sites for the bay
checkerspot butterfly (Eupliydryas editha bayensis). A large populatan of butterflies at
the Morgan Hill site probably serves as a continual source of colonists for the other
small patches, as in the simple island-mainland model. {After Harrison et al. 1988.)

(S. Harrison, personal communication). Some land owners fear that the dis-
covery of an endangered species will deprive them of their property rights.

HEATHLAND CARABID BEETLES

Not all metapopulations occur in well-defined patches, as in the cheerrspot
butterfly example. Populations may be organized as a metapopulation even
in the absence of discrete habitat patches. In the northern Netherlands, pop-
ulations of carabid ground beetles have been studied by pitfall trapping fqr
over 35 years (den Boer 1981). Radioactive marking revealed that most indi-
viduals moved a very limited distance. For example, 90% of the individuals
of the beetle Pterostichus versicolor moved less than 100 meters a day.
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Consequently, sites separated by even modest distances effectively contain
different subpopulations that are connected by migration.

Figure 4.4a shows the size of 19 subpopulations of P. versicolor that were
studied for 21 years. Although populations fluctuated asynchronously, there
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Figure 4.4 (a) Metapopulation dynamics of the ground beetle Pterosticlius versicoior
in heathlands of the northern Netherlands, Each symbol represents the track for a
different subpopulation in the heath. Note the great variability in population
dynamics and the relative rarity of local extinctions. Broken lines indicate gaps in
sampling. Lines that touch the ¥ axis indicate local extinctions. At each time period,
some subpopulations are usually increasing, which may act as sources of migrants
that prevent the extinction of declining subpopulations. (b) Metapopulation dynam-
ics of the ground beetle Calathus melanocephalus in heathlands of the northern
Netherlands. In contrast to P. versicolor, subpopulations of C. melaiocephalus tend to
fluctuate jn synchrony. Censequently, there are no “source” areas to rescue declining
subpopulations, 5o that local extinctions are more frequent. (After den Boer 1981.)
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were almost no extinctions recorded during this timeperiod. This is because,
at any point in time, some populations were increasing in size and acting as
source populations that prevented the extinction of other, declining sink pop-
ulations. In contrast, the population fluctuations of the species Calathus
melanocephalus were much more synchronous during this period (Figure
1.4b). As a consequence, conditions were sometimes uniformly bad for all
populations. At these times, there were no source populations available, so
population extinctions were much more frequent. Because each subpopula-
tion of C. melanocephalus behaved similarly, the risk of extinction was high.
Because each subpopulation of P. versicolor behaved differently, the metapop-
ulation structure effectively spread the risk of extinction. We still don’t under-
stand why the population dynamics of these two beetle species are so differ-
ent, but it is clear that metapopulation structure affects local extinction and
puerhaps long-term persistence.
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Problems

1.1. You are studving a rare and beautiful species of ant lion (see cover). Pop-
ulations of the ant lion live on a set of islands and on an adjacent main-
land that serves as a permanent source of colonists. You can assume that
the mainland is the only source of colonists and that extinctions on the
islands are independent of one another.

a. If p;= 0.2 and p, = 0.4, calculate the fraction of islands occupied at
equilibrium.

*b. A developer is preparing to pave over the mainland area for a new
condominium complex. To appease local environmental groups, the
developer promises to set aside the islands as a permanent “ant lion
nature reserve.” Assuming that p, = 0.4 and i = 0.2, predict the fate of
the island populations after the mainland population is eliminated.

4.2. An endangered population of 100 frogs lives in a single pond. One pro-
posal for conserving the frog population is to split it into three popula-
tions of 33 frogs, each in a separate pond. You know from your demo-
graphic studies that decreasing the frog population from 100 to 33 indi-
viduals will increase the vearly risk of extinction from 10% to 50%. In the
short run, is it a better strategy to retain the single population or to split it

into three?
, 13

. Suppose a metapopulation has a propagule rain and a rescue effect. The
parameters are p; = 0.3 and ¢ = 0.5. Forty percent of the population sites
are occupied. Is this metapopulation expanding or shrinking?

* Advanced problem



