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Foreword

Bioinformatics is an interdisciplinary branch of modern biology which utilizes the 
advanced computational methods to generate, extract, analyze, and interpret the 
multidimensional biological data. The rapid technological improvements made, 
especially in molecular and genetic data generation and collection, an easier task for 
scientists, but left its handling an extremely complex affair. Thus, the logical gap 
existing in between high-throughput data generation and analysis cannot be fully 
bridged without the utilization of computational methods, and this is where bioin-
formatics comes into the scene. All steps of data collection and analysis have their 
particular computational tools, and beginners trying to experience bioinformatics 
are often inevitably lost in the huge amount of ambiguously defined terms and 
concepts.

The reason for choosing essentials of bioinformatics as the main theme of this 
book series is highly justifiable. For example, the genome and protein biologists 
regularly deal with large amounts of lightly annotated data, especially which is 
produced from large-scale sequencing projects related to animal, microbial, plants, 
or human studies. The fundamental understanding about important computational 
methods becomes an unescapable need for them to perform first-hand analysis and 
interpretation of complex data without relying on external sources.

The chapters in this book mainly discusses about introduction to bioinformatics 
field, databases, structural and functional bioinformatics, computer-aided drug dis-
covery, sequencing, and metabolomics data analysis. All the chapters provide an 
overview of the currently available online tools, and many of them are illustrated 
with examples. The methods include both basic and advanced methodologies, 
which help the reader become familiar with the manifold approaches that character-
ize this varied and interdisciplinary field.

This book is designed to allow anyone, regardless of prior experience, to delve 
deep into this data-driven field, and it is a learner’s guide to bioinformatics. This 
book helps the reader to acquaint basic skills to analyze sequencing data produced 
by instruments, perform advanced data analytics such as sequence alignment, and 
variation recording or gene expression analysis. Students and researchers in protein 
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research, bioinformatics, biophysics, computational biology, molecular modeling, 
and drug design will find this easy-to-understand book a ready reference for staying 
current and productive in this changing, interdisciplinary field. The editors of this 
book chose a well-defined target group given the fact that bioinformatics is a fast-
evolving field and made a good summary of diverse gene to protein level analysis 
methods available in present-day bioinformatics field.

It is with these thoughts that I recommend this well-written book to the reader.

Kaiser Jamil
School of Life Sciences and Centre for Biotechnology and Bioinformatics  
Jawaharlal Nehru Institute of Advanced Studies
Hyderabad, India

Foreword
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Preface

Bioinformatics is a relatively young subject, compared to numerous well-established 
branches of biomedical sciences. The recent revolutionary technological develop-
ments taken place in interdisciplinary fields like chemistry, biology, engineering, 
sequencing, and powerful computing methods have greatly contributed to the rapid 
emergence of bioinformatics as a major scientific discipline. With the exponential 
accumulation of sequencing data generated from different biological organisms and 
more forthcoming, accessing and interpreting the highly complex genomic informa-
tion have become central research themes of current-day molecular biology and 
genetics. However, mining this huge genetic data generated by whole genome or 
exome or RNA sequencing methods, often coming giga- to terabytes in digital size, 
demands for advanced computational methods. It has therefore become the neces-
sity of not just the biologists and statisticians but also computer experts to develop 
different bioinformatics softwares for tackling the unprecedented challenges in the 
next-generation genomics.

In the recent decades, we all have witnessed the release of several new easy-to-
use and effective bioinformatics tools into the public domain by numerous multidis-
ciplinary academic groups on a regular basis. Since one single textbook cannot 
cover all bioinformatics tools and databases available, ordinary bench scientists are 
feeling difficulty in keeping themselves updated with the latest developments in this 
field. Hence, to support this important task, the current textbook discusses the 
diverse range of cutting-edge bioinformatics tools in a clear and concise manner.

The current book introduces the reader to essential bioinformatics concepts and 
to different databases and software programs applicable in gene to protein level 
analysis, highlights their theoretical basis and practical applications, and also pres-
ents the simplified working approaches using graphs, figures, and screenshots. In 
some instances, step-by-step working procedures are provided as a practical exam-
ple to solve particular problems. However, this book does not aim to serve as a 
manual for each software program discussed inside, rather it only briefs the purpose 
of each tool, its source, and working options, in most instances. Majority of the 
computational methods discussed in this book is available online, is free to use, and 
does not require special skills or previous working experience. They are rather 
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straightforward to use and only demand simple inputs like nucleotide or amino acid 
sequence and protein structures to analyze and return the output files.

Since majority of the chapters in this book are prepared by scientists, who utilize 
different bioinformatics tools in their day-to-day research activities, we believe that 
this book will mainly help young biologists keen to learn new skills in bioinformat-
ics. Our authors have taken care in simple presentation of chapter contents, easier 
enough for any practicing molecular biologist to independently employ bioinfor-
matics methods in their regular research tasks without consulting computational 
experts. The reader of this book is expected to be familiar with fundamental con-
cepts in biochemistry, molecular biology, and genetics. Our authors have consulted 
numerous original articles and online reading materials to provide the most updated 
information in preparing their chapters. Although we have taken a care to cover 
major bioinformatics tools, but in case if any important tool is missed out, then it is 
only due to space limitation but not a bias against any particular software program.

The chapters in this book mainly covers the introduction to bioinformatics, intro-
duction to biological databases, sequence bioinformatics, structural bioinformatics, 
functional bioinformatics, computer-aided drug discovery methods, and some spe-
cial concepts like in silico PCR and molecular modeling. A total of 17 chapters are 
included in this book, and most of them are relatively independent from each other. 
All the chapters in each section are arranged in a logical manner where one chapter 
acts as follow-ups to the next one. Since this book is basically meant for practicing 
molecular biologists, few selected molecular or mathematical formulas, which are 
prerequisites for understanding the corresponding concepts, are used. A general dis-
cussion about computational program is often described along with its web links. 
The conclusion part is provided at the bottom of each chapter to refresh the under-
standing of readers.

We sincerely thank the Princess Al-Jawhara Center of Excellence in Research of 
Hereditary Disorders (PACER-HD) and Department of Genetic Medicine, Faculty of 
Medicine and Department of Biology, Faculty of Science at King Abdulaziz 
University (KAU) for providing us the opportunity to teach and train the bioinformat-
ics course, because of which we have been able to bring up this book. We thank Prof. 
Jumana Y. Al-Aama, director of the PACER-HD, KAU, for her excellent moral and 
administrative support in letting us involved in teaching and training the bioinformat-
ics to young minds in biology and medicine. We also thank Dr. Musharraf Jelani, 
Dr. Nuha Al-Rayes, Dr. Sheriff Edris, and Dr. Khalda Nasser our colleagues in the 
PACER-HD for their wonderful friendship. We would also like to thank the chairman 
of the Department of Biological Sciences, Prof. Khalid M. AlGhamdi, and the head 
of Plant Sciences section, Dr. Hesham F. Alharby, for providing us the valuable sug-
gestions and encouragement to complete this task. Last but not the least, we would 
like to acknowledge the support of Springer Nature publishing house for accepting 
our book proposal, their regular follow-up, and the final publication of this book.

Jeddah, Saudi Arabia Noor Ahmad Shaik
  Khalid Rehman Hakeem 
  Babajan Banaganapalli 
  Ramu Elango 
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1.1  Introduction

Bioinformatics is a fairly recent advancement in the field of biological research, and 
its contribution towards the  cutting-edge medical research is phenomenal. 
Developing skills in bioinformatics has become essential to all biologists due to its 
interdisciplinary nature and involvement of cutting-edge technology through which 
it has effectively provided an insight into the inherent blueprint of molecular cell 
systems. The subject of bioinformatics is an amalgamation of various concepts 
derived from domains such as computer science, mathematics, molecular biology, 
genetics, and statistics and other domains. Bioinformatics can be defined as matri-
mony between biology and computer science, which routinely  solves complex 
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biological problems through computer science, mathematics, and statistics (Can 
2014). Bioinformatics endeavors to achieve modeling of complex biological pro-
cesses at the cellular level and gain insights into the disease mechanisms from the 
analysis of large volumes of data that is generated. Figure 1.1 given below illustrates 
the contribution of bioinformatics toward different biological and medical research 
domains.

Ever since the completion of the human genome project in 2003, biological data 
generation has increased explosively and the domain of bioinformatics is playing a 
very key role in drawing critical inference from them (Greene and Troyanskaya 
2011). During the Human Genome Project, comprehensive analysis of Human DNA 
was performed from multiple perspectives. The project started with the sequencing 
of all the base pairs, discovery of genes (more than 20,000) and mapping of 
those genes onto the chromosomes leading to further development of linkage maps. 
The most critical achievement of the Human Genome Project is the complete under-
standing of the dynamics and modalities of the human gene transcripts, their presen-
tation and localization in the genome and their fundamental molecular functions. The 
human genome project generated huge amounts of biological data and its signifi-
cance toward knowledge generation depended on the efficient data mining. The inter-
disciplinary domain of bioinformatics has played a key role in the data mining 

Fig. 1.1 Bioinformatics and biological research
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process, and in the recent years, a wide range of sophisticated bioinformatics meth-
ods,  techniques, algorithms and tools which immensely contributed toward extract-
ing the  knowledge from major biological data repositories are developed. All of 
these developments have potentially contributed towards the progression of biologi-
cal research in general but also facilitated  the progress of new scientific domains  
such as molecular medicine, targeted gene therapy, and in silico drug design 
approaches to name a few. State-of-the-art bioinformatic programs used in  high-
throughput sequence analysis allows researchers to accurately monitor and identify 
the minute genomic alterations on genes, and these kinds of endeavors result in the 
generation of massive amounts of biological data that requires highly efficient analy-
sis (Goldfeder et al. 2011; Yang et al. 2009). This once again highlights the advantage 
of bioinformatics over traditional molecular techniques where one can study only a 
single gene at one time (Jorge et al. 2012; Blekherman et al. 2011; Kihara et al. 2007).

From a biological data analysis perspective, bioinformatics is a robust set of data 
mining paradigms that help convert textual data into human perceivable knowledge. 
In every domain of scientific research, computing technologies have virtually 
become indispensable and the situation is no different in case of bioinformatics 
(Akalin 2006; Bork 1997; Brzeski 2002). Biological sequencing machines generate 
tremendous volumes of data, and it has become critically important to archive, orga-
nize, and process such data using powerful computational methods efficiently to 
extract the knowledge. Similarly, computational simulation of complex molecular 
processes can be an asset as it allows researchers to gain rapid insights in silico 
without the need for time consuming experimentations (Akalin 2006).

Some of the key contributions of the discipline of bioinformatics include (Akalin 
2006):

• Conceptualization, design, and development of biological relational databases 
for archiving, organizing, and retrieving biological data.

• Development of cutting-edge computer algorithms to model, visualize, mine and 
compare biological data.

• Highly intuitive and user-friendly curation of biological data that will help bio-
logical researchers who  lack IT knowledge to derive useful  representation of 
information.

Bioinformatic tools and techniques have become virtually ubiquitous in modern 
biological research. From a molecular biology perspective involving microarrays 
and sequencing experiments, bioinformatics techniques can be used for efficient 
analysis of raw transcript signals and sequence data. In the field of genetics and 
genomics, bioinformatics can assist in the analysis of sequencing data, annotation 
of genomic landmarks, and identification of genetic mutations that could have a 
direct correlation with disease pathology (Batzoglou and Schwartz 2014; Yalcin 
et al. 2016; Zharikova and Mironov 2016). Furthermore, bioinformatics data mining 
tools can also be highly effective in the analysis and extraction of knowledge from 
biological literature so that sophisticated gene ontologies could be conceptualized 
for future query and analysis. Bioinformatics tools and algorithms also find 
application in the field of proteomics such as the analysis of protein expression and 
its regulation. Bioinformatics can contribute toward the analysis of biological 
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pathways and molecular network analysis from a systems biology approach (Hou 
et al. 2016). In the field of structural biology, bioinformatics tools can help in the in 
silico simulation and modeling of genomic and proteomic data that can help 
researchers better understand the key molecular interactions. A key domain where 
bioinformatics has immensely contributed is, in the field of biomedicine. It will not 
be wrong to comment that every human disease is somehow connected to a genetic 
event. In this context, the complete draft of the human genome has greatly helped in 
the mapping the disease-associated genes and elucidation of their molecular func-
tion. As a result it has become possible for researchers to gain comprehensive 
insights into pathogenesis at the cellular level, thus creating grounds for the devel-
opment of effective therapeutic interventions. Through the use of the state-of-the-art 
bioinformatics and computational tools, it has now become possible to simulate, 
identify, and establish potential drug targets that will have much greater efficacy 
against diseases with minimal side effects. With the advent of different bioinformat-
ics paradigms, it has now become possible to carry out analysis of an individual’s 
genetic profile  leading to the innovative concept of personalized medicine. In 
domains such as agriculture, bioinformatics tools can be used to alter the genomic 
structure so that there is an increase in the resistance of crops toward different plant 
pathogens and insects (Bolger et al. 2014; Edwards and Batley 2010).

1.2  The Role of Bioinformatics in Gene Expression Data 
Analysis

A molecular biology experimental paradigm that is extensively used to decipher the 
inherent characteristics and functionality of an entire cohort of gene transcripts on a 
genome is microarray. A major strength of the microarray is its ability to characterize 
the complete genes using a single microarray chip or plate (Konishi et al. 2016; Li 
2016). Microarrays contain a solid substrate where protein and DNA are printed as 
microscopic spots. DNA microarray chip may contain short single-stranded oligonu-
cleotides or large double-stranded DNA strands. These spots are called as probes, and 
they hybridize with the cDNA samples from the control and the test subjects whose 
identity is unknown (Konishi et al. 2016; Li 2016). The microarray process starts with 
the extraction and purification of RNA from the control and test samples and their 
transformation into cDNA using reverse transcriptase enzyme. To differentiate the test 
and control samples, the cDNA from control samples is labelled with green Cy3 fluo-
rescent dye while the test sample cDNA is labelled with red Cy5 fluorescent dye. The 
role of the fluorescent dye is to help the researchers accurately estimate the expression 
profile of the genes. After the experiment is complete, microarray chips/plates are 
scanned using a scanning device, and the data is collected for analysis. The probes 
(both test and control) offers a complete representation of the genes that have com-
pleted the process of transcription. Certain gene transcripts may show hybridization 
with both the test and the control samples and appear as yellow spots on the array (Frye 
and Jin 2016; Non and Thayer 2015; Soejima 2009). At this juncture, the role of 
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bioinformatics has become critical with regard to analyzing and deciphering the micro-
array data to extract the desired information. Bioinformatics data mining tools and 
work pipelines such as cluster analysis, and heatmap show high efficacy in microarray 
data analysis (Bodrossy and Sessitsch 2004; Loy and Bodrossy 2006). A typical micro-
array experiment workflow is presented in Fig. 1.2 (Macgregor and Squire 2002).

1.3  The Role of Bioinformatics in Gene/Genome Mapping

High-throughput sequencing technologies have allowed us in generating  whole 
genome sequencing data at a phenomenal rate. Today a wide range of user-friendly 
genome browsers are available on the web which can help researchers analyze their 
gene or genome landmark of interest with the click of a button (Mychaleckyj 2007). 
Many such genome browsers offer cutting-edge genome mapping tools but it needs 
to be noted that de novo genome mapping is still a necessity for many researchers. 
The technique of gene or genome mapping involved the characterization of key 
landmarks on the genome. The fundamental aim of genome mapping is to create a 
comprehensive map of the genome of interest and identify landmarks such as gene 
regulatory sites, short-sequence repeats, single nucleotide polymorphism, or even 
the discovery of completely new gene transcripts (Waage et al. 2018; Brown 2002). 
Researchers across the globe are carrying out more and more sequencing experi-
ments with each passing day, and the fundamental question that they face concerns 

Fig. 1.2 The microarray workflow
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the need for genome maps. These maps allow identification of the key genetic fea-
tures that could have major therapeutic significance (Brown 2002).

In silico gene mapping (Schadt 2006), uses the publicly available genomic data-
bases to discover and map genes on the genome. In silico gene mapping techniques 
using bioinformatic applications have been very successful in identifying or map-
ping QTLs (quantitative trait loci) that help understand the molecular pathways 
associated with the pathogenesis of different polygenic diseases (Burgess- Herbert 
et al. 2008). The excellent and informative BAC (bacterial artificial chromosome) 
clone contig map for Sus scrofa is achieved with help of in silico mapping 
approaches. In silico allows efficient and fast mapping of genes, which may specifi-
cally influence resistance or susceptibility of a particular animal towards a specific 
disease. Moreover the availability of excellent computational resources, public 
genomic and phenotypic databases like UniGene and GenBank, and tools like 
BLAST considerably accelerates the mapping process, when done in silico as com-
pared to the conventional methodologies that are more labor intensive, costly, and 
time consuming (Schadt 2006). The simple workflow of the gene mapping tech-
nique is illustrated in Fig. 1.3.

1.4  Role of Bioinformatics in Sequence Alignment 
and Similarity Search

Deciphering the similarity between DNA, RNA, or protein sequences is a critical 
step toward gaining insights into different biological processes and disease 
pathways. Sequence similarity can help researchers identify and characterize 
candidate genes or single nucleotide polymorphisms that can predispose an 
individual toward major pathological conditions such as cancer and autoimmune 
diseases. Sequence similarities can be determined by carrying out pairwise or 

Fig. 1.3 Illustration of large-scale mapping of a gene by genetic mapping and physical mapping
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multiple sequence alignments that can help in the identification of similar patterns 
and characteristics. In essence, sequence alignment is the key when it comes to the 
identification of functional and evolutionary relationships between different organ-
isms. During the process of sequence alignment, the sequences are arranged one 
over the other and a match is determined. If two nucleotide entries in the test 
sequences show a mismatch, then a gap in the form of a special character such as “-” 
is introduced. Mismatches can also have key molecular, biological, and evolution-
ary significance (Taylor and Triggle 2007). A gap in a sequence could be due to an 
insertion of a new base or the deletion of an existing base. Sequence alignments in 
general can be either global or local (Taylor and Triggle 2007). An alignment is 
considered global when the entire length of the two query sequences are matched.

On the other hand, a local alignment is about achieving alignments of specific 
regions in the matching sequences (Chandramouli and Qian 2009). From a 
bioinformatics perspective, the paradigm of sequence similarity is an assent when it 
comes to a carrying out a wide variety of molecular analysis. Different bioinformatics 
sequence alignment algorithms are available today, and all of them implement 
probabilistic models with regard to presence of either matches or mismatches 
(Hickey and Blanchette 2011). The probability of sequence matches are obtained 
from curated repositories that archives sequence match incidents. When seen from 
an evolutionary perspective, the databases which  contains multiple sequence 
alignments that are properly vetted by researchers and curators are considered to be 
accurate (Eddy 2009).

With regard to the bioinformatics algorithms that are commonly used for 
sequence similarity searches, BLAST is undoubtedly the most commonly used 
software platform. The BLAST algorithm is based on a heuristic approach that tries 
to create an alignment without gaps and with the objective of creating an optimal 
local similarity score. The USP of the BLAST algorithm does not lie on its speed of 
execution but rather on the assignment of a value called the p-value that determines 
the quality of the alignment (Altschul et al. 1990). The BLAST algorithm carries 
out comparison of nucleotide as well as amino acid sequence pairs to look for local 
similarities (Altschul et al. 1990; Babajan et al. 2011). The BLAST algorithm not 
just looks for similarities in nucleotide and amino acid sequences but also helps in 
the detection of key sequence features such as motifs and genes that code proteins 
responsible for disease phenotypes. There are many servers available on the web 
that allows BLAST similarity searches but the most popular one used for nucleotide 
and protein applications is  NCBI BLAST (Pertsemlidis and Fondon 2001). The 
basic BLAST workflow is presented in Fig. 1.4.

As illustrated in Fig. 1.4, the sequence similarity process during BLAST pro-
ceeds with the processing of the input sequences followed by the construction of a 
reference lookup table to be used for sequence matching. Once the table is ready, 
the actual sequence comparison starts between the input sequence and the lookup 
table created earlier. If hits are detected, the algorithm tries to extend the alignment 
to the maximum limit, and a score is assigned. The alignments that have been 
assigned an acceptable score are retained and they undergo further analysis with the 
objective of detecting other types of genomic landmarks such as insertions or 
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deletions (Camacho et al. 2009). With regard to protein sequences, BLAST sequence 
alignment is of key utility to look for phylogenetically and functionally significant 
conserved regions. The presence of such conserved regions could very well indicate 
a homology between different protein groups or families that were otherwise 
thought to be phylogenetically distant (Varon and Wheeler 2012). It may be possible 
that the similarity score between two protein sequences is not that significant but the 
presence of conserved regions between the two could have tremendous biological 
and therapeutic significance.

Furthermore, protein sequence alignment algorithms such as BLAST can also 
help in detecting conserved structures, and this can help in the in silico prediction 
and simulation of protein structures that were previously unknown (Varon and 
Wheeler 2012). Different BLAST distributions that are available through the NCBI 
portal include the following (Koltes et al. 2009; Neumann et al. 2014; Madden et al. 
1996):

• BLASTn: BLAST algorithm for nucleotide sequence alignments.
• BLASTp: BLAST algorithm for amino acid sequence alignments.
• BLASTx: A BLAST algorithm that uses a nucleotide sequence as the input 

to compare with a protein database. 
• TBLASN: It search translated nucleotide databases using a protein sequences. 

The TBLASx algorithm translates the nucleotide database during the alignment 
process.

While pairwise alignments are resource intensive to carry out, alignment of mul-
tiple sequences can be even more computationally intensive. The dynamic program-
ming algorithm implemented by BLAST can be extended for multiple alignments 
as well, but the time of execution becomes large and virtually impractical. To deal 
with this issue, a heuristic approach is adopted where all the possible pairwise align-
ments are created first and then assembled in a stepwise manner. The approach 
involves alignment of clusters of aligned sequences to create a final alignment. 
Some of the popular bioinformatics programs used in multiple sequence alignment 
are T-COFFEE, ClustalW, and MUSCLE (Thompson et al. 2002; Di Tommaso et al. 
2011; Edgar 2004).

SetUp
Scanning

Trace Back

N

N

Read Query
More Sequence?

Find Word Match
Calculated improved Score

Insertions/Deletions
Gap Free Extension

Matches?

(Y)

(Y)

Save Hits

Read Option
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Build Lookup Table

Fig. 1.4 BLAST working principle
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1.5  Contribution of Bioinformatics toward Modern Cancer 
Research

The burden of cancer on the global healthcare sector is increasing at a tremendous 
rate, and according to a study by Fitzmaurice et  al. (Global Burden of Disease 
Cancer et al. 2018), in a span of 10 years between 2005 and 2015, the global cancer 
incidence rate has gone up by 33%. The interdisciplinary domain of bioinformatics 
can immensely contribute toward cancer research through the development of in 
silico tools, which can provide insights into molecular cancer pathways and help in 
the better understanding of the pathogenesis and cancer progression dynamics. The 
cancer bioinformatics discipline utilizes the information derived from clinical infor-
matics and medical informatics fields to understand, conceptualize, and develop 
effective diagnostic and therapeutic interventions against different forms of human 
cancers. Researchers have carried out numerous studies which have focused on the 
development of highly effective semantic models that brings together different 
types of genomic and transcriptomic data gathered from cancer samples and their 
integration with gene ontology data for the construction of cancer networks (Holford 
et al. 2012). Efforts such as these facilitate the evaluation and better understanding 
of the molecular response toward anticancer interventions that are currently in prac-
tice. There are state-of-the-art bioinformatics utilities such as miRTrail that were 
developed with the objective of gaining key insights into the modalities of interac-
tion taking place between genes and miRNA molecules. Such insights can contrib-
ute immensely towards a better understanding of the underlying malignant processes. 
According to Laczny et al. (Laczny et al. 2012), the miRTrail utility can be used to 
integrate information collected from more than 1000 miRNA samples, 20,000 
genes, and more than 250,0000 molecular interactions so that it becomes possible 
for researchers to comprehend the regulatory mechanisms that take place during the 
development of different types of cancer. Another major benefit of cancer bioinfor-
matics is its ability to identify potential cancer biomarkers that could be associated 
with different cancer phenotypes. Information on cancer biomarkers can be highly 
useful in malignancy characterization, early diagnosis, and development of more 
effective interventions.

Within the domain of cancer bioinformatics, analysis of the expression profiles 
of gene transcripts that are associated with different cancer phenotypes is a well- 
established approach (Subramanian et al. 2004). Cancer genes that have got con-
nection with different types of malignancies have unique expression profiles 
compared to their normal genes. The identification and characterization of these 
genes using bioinformatics tools can help in discovering new cancer markers or 
signatures with tremendous therapeutic and diagnostic significance. 
Characterization of cancer markers can contribute towards the identification of 
population groups that are under higher risk of developing cancer and can even 
help in predicting the outcome of treatment interventions (Jones et al. 2005). A 
thorough bioinformatics analysis of the cancer genes is also very important 
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because it can help in the development of new anticancer interventions with 
molecular entities such as siRNAs. It is interesting to note that the diverse range of 
bioinformatics tools can be used in studying molecular basis of cancer depending 
on the inheritance mode of the disease, pathogenic mechanisms, and metastatic 
characteristics. Within the discipline of bioinformatics, the sub-domain of clinical 
bioinformatics is highly effective when it comes of early diagnosis and effective 
intervention because it integrates multiple research paradigms such as clinical 
informatics, omics technology, and medical informatics (F. Wang et al. 2011). In 
the post-genomic era, diagnosis and treatment of different forms of cancer is no 
longer limited to the clinical setting alone. Effective cancer management in the 
present era is a combined outcome following the integration of multiple disci-
plines such as computational tools, software utilities, and biological databases that 
help in the identification and characterization of gene markers, quantitative trait 
loci, and candidate genes that have direct association with different forms of 
malignancies. Given the regular developments taking place in the domain of can-
cer bioinformatics, it will not be wrong to assume that it will play a much more 
significant role in the very near future towards establishing valid relationships 
between potential cancer candidate genes and cancer phenotypes. Accurate identi-
fication of such cancer phenotypes can be highly instrumental in achieving early 
diagnosis that would eventually contribute towards the early start of treatment and 
better prognosis thresholds (Wang et al. 2018).

Furthermore, valid characterization of cancer phenotypes can also facilitate con-
tinuous monitoring of the treatment outcomes (Y. Wang et al. 2018). Efficient use of 
bioinformatic resources for the identification of cancer-associated markers can help 
healthcare providers make the most informed decision with regard to selecting the 
best intervention from a range of available options such as surgery, radiation ther-
apy, and chemotherapy (Katoh and Katoh 2006). When a biomarker associated with 
non-metastatic tumors is detected, then it is advisable to go for surgical interven-
tion, and if biomarker associated with highly metastatic cancer is are detected, then 
combinations of radiation and chemotherapy are more advisable (Katoh and Katoh 
2006). Bioinformatics analysis of the transcriptome has allowed researchers to iden-
tify biomarkers associated with malignancies of the lung, uterus, and esophagus 
(C. Kihara et al. 2001).

Pathogenic genetic mutations in the human genome can predispose an individual 
to cancer and even affect the cancer intervention paradigms in a negative manner 
(Mount and Pandey 2005). One of the most common forms of variation that is 
present in genomes is single nucleotide polymorphism, commonly referred to as 
SNP, and researchers have established that these polymorphisms could have serious 
implications with regard to cancer pathogenesis and progression (Zienolddiny and 
Skaug 2012). The role of cancer bioinformatics in this context is established once 
again in the sense that bioinformatics analysis of cancer-related SNPs is emerging 
as an effective intervention strategy.

When there is a single-base substitution in the genome, the event is referred to as 
single nucleotide polymorphism, and this could have immense medical and phylo-
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genetic significance. The occurrence of SNPs is rather common, and most of them 
are harmless without any pathological significance. However some SNPs can result 
in serious medical conditions such as sickle cell anemia putting immense pressure 
on the global healthcare sector (Botstein and Risch 2003). After the release of com-
plete draft of the human genome, numerous medical research studies have identified 
more than ten million single nucleotide polymorphisms that are uniformly distrib-
uted across the entire length of the human genome (Carlson et  al. 2003). Single 
nucleotide polymorphisms are a direct result of point mutational events; their pres-
ence in the genome is very diverse from one human population to the  another 
(Erichsen and Chanock 2004). Genome-wide association studies have been able to 
define the dynamics of the association between SNPs and cancer, and it has been 
established that SNPs can either make an individual or a population of individuals 
susceptible to a particular form of cancer or even influence the outcome of cancer 
treatment (Erichsen and Chanock 2004).

A good example is the MPO gene carrying an SNP (−463G>A) that can predis-
pose Caucasians to different forms of lung malignancies (Cascorbi et al. 2000). 
Bioinformatics tools can also help in the identification of pharmacogenetic mark-
ers through the identification and analysis of SNPs, characterization of the gene 
expression profiles, and delineation of drug metabolism pathways (Wilkinson 
2005). Identification and characterization of pharmacogenetic markers can be 
extremely helpful in predicting if there will be any drug induced side effects in the 
patient and also in estimating the optimal drug dose (Need et al. 2005; Banaganapalli, 
Mulakayala, D, et al. 2013a; Banaganapalli, Mulakayala, Pulaganti, et al. 2013b). 
Following the establishment of the role of SNPs in cancer pathogenesis and cancer 
therapeutic outcomes, a comprehensive SNP database called dbSNP was devel-
oped by NIH. This is an excellent bioinformatics resource that helps in the identi-
fication and characterization of not just cancer-related SNPs but also other forms 
of genomic variants such as insertions and deletions, microsatellites, and short 
tandem repeats (Sayers et al. 2012).

1.6  The Domain of Structural Bioinformatics

The unprecedented advancements in high-throughput molecular methods, like 
next generation sequencing technology, microarray based gene expression assays 
and mass spectrophotometric identification of metabolites, have made the develop-
ments in structural biology inevitable. Furthermore, the elucidation of molecular 
structures or theoretical analysis of proteins has become a central step in under-
standing the complex biological mechanisms and also in drug discovery processes 
(Gutmanas et al. 2013). In this context, the bioinformatics component of structural 
biology, known as structural bioinformatics, which deals with both prediction and 
analysis of 3 dimensional structures of proteins, DNA and RNA rapidly became a 
potential alternate option compared to labor intensive traditional laboratory 
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methods. Structural bioinformatics utilizes the information from both experimen-
tally proved molecular structures and computationally predicted models to shed 
light into the structural organization of bio molecules in terms of molecular fold-
ing, motifs, interacting residues, binding affinity and structure-function relation-
ships (Samish et al. 2015; Al-Abbasi et al. 2018). Computational methods not only 
provides useful predictions about the molecular structures and functions, but they 
can also provide the in depth analysis of structures solved through experimental 
approaches.A wide range of bioinformatics tools useful in amino acid sequence 
analysis, modeling, and structural visualization have been developed in the recent 
years. For example, the protein data bank (PDB) is the largest model repository 
which holds the structures of more than 130000 proteins, in addition to 3200 
nucleic acids and 7200 nucleic acids-protein structure complexes. The vast molec-
ular structural information available in PDB have not only allowed us in predicting 
ligand binding sites and active sites (statistical methods) in the target proteins, but 
also to predict other homologous proteins and to elucidate the structure and func-
tional relationships (Banaganapalli et  al. 2017; Vaser et  al. 2016; Shaik et  al., 
2018). Another widely used computational server used in visualizing the 3D struc-
tures is modeller. The Modeller utilizes both sequence and structural data as input 
in FASTA and PDB formats and executes database similarity searches using 
BLAST and PSI-BLAST methods. Modeller allows efficient and rapid detection of 
structural homology and template-based modeling of query protein sequences 
(Altschul et al. 1990). The homology modeling workflow is presented in Fig. 1.5 
(Webb and Sali 2017; Shaik et al. 2014; Banaganapalli et al. 2016). The protein 
structure information when integrated with genomic and metabolomics data, pro-
vides multifold information in better understanding the pathways and cellular 
pathways at the molecular level (Chicurel 2002).

1.7  Bioinformatics Processing of Big Data

With the rapid advancement of high-throughput sequencing paradigms, the rate of 
generation of biological data has increased at a phenomenal rate. Huge volumes of 
molecular data is being exponentially generated from sequencing experiments on 
different clinical conditions. Following the generation of such huge volumes of 
data, a pertinent need for efficient paradigms that can store and process the data in 
a highly time-sensitive manner became evident. It quickly became apparent to the 
researchers that the old statistical data analysis protocols are incapable of handling 
such data volumes and more sophisticated data analysis paradigms are required 
(Greene et al. 2014; Chen and Gao 2016). Requirements such as these led to the 
conceptualization and development of robust bioinformatics techniques  that are 
highly efficient in the identification, evaluation, and characterization of inherent 
data patterns. Both supervised and unsupervised machine learning protocols are 
being implemented for rapid and efficient processing of huge data volumes curated 

B. Banaganapalli and N. A. Shaik



13

and stored by repositories such as the Cancer Genome Atlas (Hinkson et al. 2017). 
State-of-the-art bioinformatics web utilities such as PILGRM (Platform for 
Interactive Learning by Genomics Results Mining) facilitates rapid and accurate 
identification of candidate genes that may be implicated in different disease patho-
genesis (Greene and Troyanskaya 2011). Big data can be an excellent asset for 
researchers to discover and identify key findings that could have major ramifications 
for human and animal health, but there are major challenges associated with effi-
cient data storage, management, and analysis. It is imperative that biologists and 
bioinformatics researchers collaborate to conceptualize and develop paradigms that 
can efficiently overcome these impending challenges (Chen and Gao 2016; Greene 
et al. 2014; Puhler 2017).
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Fig. 1.5 Homology modeling workflow
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1.8  Conclusion

The interdisciplinary domains of bioinformatics have revolutionized the way infer-
ences are drawn from biological data sets. Diverse bioinformatics paradigms for 
efficient biological data analysis and knowledge interpretation have not only shed 
light on complex biological processes but have also led to the identification of previ-
ously unknown disease markers, contributing immensely toward the development 
of effective therapeutic interventions. The rapid pace of development taking place 
in the field of bioinformatics can further bring revolutionary changes in the field of 
biological data management, archival, and processing.
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2.1  Introduction to Databases

Database is a computerized resource where data is structured in a way that makes it 
easy to add, access, and update it. The main purpose of databases is to enable easy 
handling and retrieval of information through multiple search features 
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(Garcia-Molina et al. 2002). Database is organized in a way that each data entry 
represents a record. A record contains multiple items of data; therefore it consists of 
a number of fields. For example, names, phone numbers, addresses, etc. are all 
attached to one particular record (Garcia-Molina et al. 2002). To search the database 
for a specific record, the user can use information given in a single field to retreive 
the whole record (Jagarlapudi and Kishan 2009). In data science, this is called as 
making a query.

Biological databases have tools for higher level information processing. Their 
objective is not only to store information but also to discover. They often have the 
ability to detect connections among new entries and previously archived data to 
avoid overlapping of the data (Birney and Clamp 2004). They also can perform com-
putational operations on the stored data, for example, detect sequence homology or 
certain motifs. This facilitates a comprehensive holistic approach to biological data.

2.2  Types of Databases

When databases originated, they were in the form of plain text file with multiple 
entries separated by vertical or horizontal delimiter, e.g., a vertical bar or any other 
suitable character, much like a large table where raw data is stored. It didn’t support 
further tasks like finding similarities or repetitions or adopting keywords. For a 
computer to search for a certain piece of information, it had to read through all the 
regions of the text (Özsu and Valduriez 1991). This is a time-consuming process that 
requires a heavy-duty processor and intense-performance memory. For small data-
bases, it shouldn’t be a problem, but biological ones are often very large with a huge 
amount of data in different fields. Computers are often crashed during the search 
processes if they exceed the capacity of their operating systems. Thus, to facilitate 
accessing and searching through the data, many sophisticated software programs 
have been designed and installed. They are programmed to find connections among 
the raw information entered into the database. These software programs are called 
database management systems with the function of storing, monitoring, and sorting 
all types of information. They structure the raw data into sets according to different 
combinations and connections they can find, making the search processes more 
organized and effective. Hence, they can make reports of the search and conclude 
more information from the raw data entries (Gibas 2001). Databases management 
systems are classified into two large groups: relational databases and object- oriented 
databases. These have their own management systems. 

2.2.1  Relational Databases

Relational databases categorize the data into columns/entities with different values/
instances (Codd 1998). These entities have something in common called as  
attribute. The attribute represents information about the values of the entity 
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(Ramakrishnan and Gehrke 2003). Let’s take an example to make things easier. A 
survey is conducted to list all the students in a given state and the schools they study 
in. The table representing the state will have a column for the schools’ ordinal num-
ber and another for its name, likewise a column for the students’ number and another 
for their names (Table 2.1). So, if you look for a certain student, the computer has 
to read through the whole table. In relational database, the following will happen: 
the big table will be divided into two. One is for the school name and number 
(Table 2.2). The other will have the student name, number, and the number of the 
school he visits (Table 2.3). If he or she is a student at school number 3 the computer 
will automatically look up the second table and get the name of the corresponding 
school which is in this case Z.

Relational databases segregate the flat file which nothing but a plain text 
file  into smaller ones according to their relation facilitating a quick and simple 
query. Retrieving information from these databases is more efficient, and new data 
can be added with no modifications in the old ones. However, generation of rela-
tional databases is a complicated process that takes a lot of planning and design-
ing. The specialized  programming language used for their creation is called 
Structured Query Language (SQL). Once they are generated, searching through 
them will be an easy task. New data categories can be added to the database with-
out having to change the whole system. Also, different tables can be connected to 
each other logically by relations. The connection could be one-to-one, meaning 
each table connected separately to the previous or the next in succession, or many-
to-many where multiple tables are connected together. The more the specializa-
tion, better the performance of the database. Creation of relational databases is 
tiresome. Once finished, searching and getting a final report of whatever search 
objects is easily possible. 

Table 2.2 Relational 
databases data

School no. School name

1. X
2. Y
3. Z

Table 2.3 Relational 
databases data

Student no. Student name School no.

1. Jaan 1.
2. Rayyan 2.
3. Sarah 3.

Table 2.1 Relational 
databases data

Student no. Student name School no. School name

1. Jaan 1. X
2. Rayyan 2. Y
3. Sarah 3. Z

2 Introduction to Biological Databases
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2.2.2  Object-Oriented Database

Sometimes one of the features making relational databases inadequate is that they 
are isolated entities of abundant information. It may be difficult to integrate sophis-
ticated hierarchical pieces of information into the database or connect them together 
(Garvey and Jackson 1989). Therefore, another type of databases emerged to over-
come this problem. Object-oriented databases set an “object” as the unit of combi-
nation or description of the data. The notion “object” also implies the behavior of 
this data set and computational operations done on it. In other words, object is a 
single word to describe the concept behind a set of data and the processes these data 
undergo. Objects of a database are linked together by a group of pointers that indi-
cate the relationships among these objects. This hierarchical system allows for easy 
accessing of information without the need of some index to understand the links. 
If we consider the previous example, there would be three objects: student objects, 
school object, and state object. Their interrelations are pointers which are  repre-
sented by arrows in the Fig. 2.1. A pointer may refer to the state that the student lives 
in and to the school he or she attends (Fig. 2.1).

Object-oriented databases  usually use programming languages like C++ and 
Java since these languages show more flexibility and inheritance. Objects can be 
searched and accessed easily. New objects can be added dynamically at any time 
without the demand to change previously added tables. Related objects are orga-
nized into classes which facilitates homology identification. Also, each object has 
a predictable behavior, so new data can be extracted from the database just 

State = New York

State = California

State = Hawaii

Students

Students

School No. # = 3
School Name = Z

School No. # = 2
School Name = Y

School No. # = 1
School Name = X

Student No. # = 1

Student No. # = 2

Student Name = Peter

School

Student Name = Sam

Student No. # = 3

Student Name = Sarah

Fig. 2.1 Example of hierarchical system of object-oriented database
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by observing the mathematical behavior of the entries. The new inputs have the 
capability to inherit data attributes from previously added objects. Object-oriented 
databases are better at modeling to real world. But on the other hand, they may 
lack the precise mathematical structure of relational databases. Pointers and rela-
tions between the objects could be misinterpreted or wrongly displayed. For that 
reason, object- relational  databases now have integrated characteristics of both 
types databases.

2.3  Introduction to Biological Databases

Biological databases make use of the three aforementioned database types: plain 
flat text, object-oriented, and relational databases. Combination of their features 
brings out the best results (Bourne 2005). Despite many limitations and restric-
tions the flat text is used only in biological databases and in small databases (Stein 
2002), they resort to the plain text table format keeping in mind that the research-
ers understand the operation and output in all cases (Baxevanis 2009, 2011).

2.3.1  Classification of Biological Databases

According to the information added to the database, they are classified into three 
main categories: primary databases, secondary databases, and composite or special-
ized databases. Primary databases serve as computational archives containing only 
raw data, e.g., nucleic acids and protein sequences. Examples include GenBank and 
Protein Data Bank (Mullan 2003).

Secondary biological databases use the original data in primary databases 
to derive new data sets by using specialized software programs or by manual anno-
tation of information. Secondary data include translated protein sequences and 
active site residues. Examples of secondary databases are InterPro, a database for 
protein families, PIR (Protein Information Resources), Swiss-Prot for protein struc-
ture, and Ensembl that specializes in studying variation, classification, and function 
of the genome sequences.

A  composite database may  combine more than one primary database so that 
instead of searching each one separately, the user can search related databases 
together for quick results. The NCBI is the best example for this type. Specialized 
databases are  dedicated to a specific research field such as Ribosomal Database 
Project which stores  only rRNA gene sequence. Table 2.4 contains a list of  
frequently used databases (Stein 2013).

2 Introduction to Biological Databases
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2.3.2  Primary Database

Three of the most outstanding nucleic acid sequence databases created by scientists 
and researchers around the world are open access i.e. they are freely available on the 
Internet (Bishop 1999). Anyone  can access these three databases which  are the 
European Molecular Biology Laboratory (EMBL) (1990), DNA Data Bank of Japan 
(DDBJ) (Mashima et al. 2017), and the GenBank database (Benson et al. 2018). 
These databases contain data which has been freely deposited by the researchers 
from around the world  but this data  lacks proper annotation. Most international 
journals nowadays require the authors to annotate and submit their protein and/or 
DNA sequence to any of the three databases before accepting their article for publi-
cation. Publishers in  this way can validate  all sequences or  structures submitted 
against those already available  in  the database for redundancy or other purposes. 
These three databases collaborate with each other exchanging new data nearly every 
day. So, a researcher only needs to access one of them to avail the latest information. 
The three databases together make the International Nucleotide Sequence Database 
Collaboration. Despite having the same data, they have different designs and dis-
play formats. The protein data bank (PDB) (Rose et  al. 2013) stores  the three- 
dimensional structure of protein and nucleic acids. Although it uses a flat file format, 
for the sake of convenience, its interface supports simple manipulation of the 3D 
structures. 

2.3.3  Secondary Databases

Primary databases often lack annotation and multiple other features. Thus, informa-
tion processing tools are of much importance as they turn the plain raw data into 
more sophisticated knowledge. Secondary databases have this capability alongside 

Table 2.4 Most popular biological databases

Database Short description URL

GenBank National Center for biotechnology 
information primary database

https://www.ncbi.nlm.nih.gov/

EMBL Molecular biology primary database http://www.embl.org/
DNA data Bank of 
Japan

DNA sequence primary databank http://www.ddbj.nig.ac.jp/

OMIM Online Mendelian inheritance in man – 
Human genome secondary database

http://www.omim.org/

FlyBase Specialized organism database http://www.flybase.org/
Swiss-Prot Protein sequence database http://www.flybase.org/
InterPro Protein-based secondary database http://www.ebi.ac.uk/interpro/
Reactome A specialized database for human reactions 

and metabolic pathways
http://www.ebi.ac.uk/interpro/
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their ability to analyze information and draw conclusions. Secondary databases 
vary in how advanced they process the data extracted from the primary ones. Some 
secondary databases have only a limited degree of processing and translate the 
sequence data from stored DNA. Others have higher levels of analyzing and han-
dling information. They provide info about annotation, family rank, function, and 
structure. For example, UniProt/TrEMBL database stores information regard-
ing various aspects of translated nucleic acid sequences and functional macromol-
ecules. Data are extracted from published literature and added to the database 
for curation and annotation. This is done manually ensuring a high level of accu-
racy and up-to- date information. Any protein in the database is annotated with its 
function, structure, catalytic sites, domain, metabolic pathway, disease association, 
and any other relative information (Zou et al. 2015; D’Eustachio 2013; Toby 2012; 
Banaganapalli et al. 2016).

2.3.4  Specialized Databases

Specialized databases are large-scale collaborations between members of the sci-
entific community devoted to a specific disease or a certain organism. The abun-
dance of data and lack of organization were the main reasons for their appearance. 
Information in these specialized databases is usually curated by authors or experts 
in the field (Toby 2012), which indicates  that  they may have advanced computa-
tional capabilities than secondary databases. This databases may also allow interac-
tive platforms where the users can add notes or comments. An example of this is the 
Parkinson disease map project by department of life sciences and biological systems 
at Luxembourg University. Taxonomic-specific databases are also specialized ones. 
Examples include FlyBase, TAIR, and AceDB (Zhang et al. 2016).

2.3.5  Interconnection between Biological Databases

The user usually needs to search in various databases to get what he or she needs. 
So, it is better to incorporate them together through composite ones. The difficulty 
lies in the design and format differences; flat file, relational, or object-oriented data-
bases. A specification language called Common Object Request Broker Architecture 
(CORBA) has emerged to enable database programs to collaborate regardless of 
their database structure. Another system called eXtensible Markup Language 
(XML) also specializes in combining databases. Any data entry or record is divided 
into small components labelled by specific tags. Bioinformatics researchers have 
also developed a new method for data exchange called the distributed annotation 
system. This protocol allows one computer to connect to multiple servers at a time 
and extract data concerning different sequence annotations. It then integrates it into 
a final search report (Baxevanis 2011).

2 Introduction to Biological Databases
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2.4  Retrieval from Databases

The most important function of any database is to provide an easy access to the 
stored information. Therefore, there are systems specially designed for the retrieval 
process. Entrez and Sequence Retrieval Systems (SRS) are examples of these 
systems. They provide advanced search options through an user-friendly interface 
and  Boolean operators to search  through multiple databases. Boolean opera-
tors  help  define the relation between the  variables in the search box to give a 
refined  output, e.g., and/or/not and so on. It also supports the keyword search. 
Obviously “and” gives the order to bring results containing all mentioned variables, 
“or” indicates the case when either one of the variable is relevant, whereas “not” 
means to exclude search results with this piece of information. Using these advanced 
options facilitates the search process to a great degree and makes it very specific 
(Sreenivasaiah and Kim 2010; Shaik et al. 2018).

2.5  Conclusion

Biological databases are digital libraries where data such as DNA and protein 
sequences are stored. With the progress of Life sciences, it became important to store 
biological data in an organized way to facilitate the search process. Biological data-
bases make it easy to access, analyze, and do sophisticated calculations on the data. 
This helps researchers  to draw new conclusions by  linking different knowledge 
aspects together. Biological databases are classified, according to the program man-
agement system, into flat file, relational, and object-oriented databases. Raw data is 
stored  in the primary databases secondary  databases store information generated 
by further processing of the raw data, and specialized databases offer information 
about a specific aspect of interest.
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3.1  Introduction

Bioinformatics involves the use of information technology to collect, store, retrieve, 
and analyze the enormous amount of biological data that are available in the form 
of sequences and structures of proteins, nucleic acids, and other biomolecules 
(Toomula et al. 2011). Biological databases are mainly classified into sequence and 
structure databases. The first database was created soon after the sequencing of 
insulin protein in 1956. Insulin was the first protein to be sequenced; it contains 51 
amino acid residues  (Altschul et al. 1990). Over the past few decades, there has 
been a high demand for powerful computational methods which can improve the 
analysis of exponentially increasing biological information, finally giving rise to a 
new era of “bioinformatics.” Development in the field of molecular biology and 
high-throughput sequencing approaches has resulted in the dramatic increase in 
genomic and proteomic data such as sequences and their corresponding molecular 
structures. Submission of such facts into public information has led to the develop-
ment of several biological databases which can be accessed for querying and retriev-
ing of stored information through the research community. During the mid-1960s, 
the first nucleic acid sequence of yeast tRNA was found out. Around this period 3D 
structure of the protein was explored, and the well-known Protein Data Bank (PDB) 
was developed as the primary protein structure database with approximately ten 
initial entries (Ragunath et al. 2009).

The ultimate goal of designing a database is to collect the data in the suitable 
form which may be easily accessed through researches (Toomula et al. 2011). In 
this chapter, we are cataloguing the various biological databases and also provide a 
short review of the classification of databases according to their data types.

3.2  Sequence Data Generation

The sequencing technique has played an essential role in analyzing the biological 
data of organisms. The initial pioneering work in the field of sequencing was done 
by Frederick Sanger, as well as by Maxam and Gilbert. Their initial sequencing 
methods have greatly helped in the development and validation of current-day 
advanced sequencing technologies (Heather and chain 2016). Over the years, the 
technological advances made on sequencing, molecular biology and automation 
increased the technological efficiency of sequencing and allowed the analysis of 
multiple DNA sample sequencing at a single run. As a result, researchers moved 
from expensive and time-consuming in vitro and in vivo methods to quick and reli-
able in silico analysis as a first-line option in biomedical research (Ansorge 2009). 
Recent decades have witnessed the continuous decoding, publishing, and hosting of 
genomes from multiple organisms by sequence repositories.
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3.2.1  The First Generation of Sequencing

The first generation of sequencing is dominant over the other three decades in which 
the Sanger technique was widely used. The Sanger technique, as well as Maxam 
and Gilbert technique, was categorized as the first generation of sequencing. The 
Sanger technique relies on DNA synthesis in vitro, coupled with chain termination. 
The first genome elucidated through Sanger technique was bacteriophage φX174 
(genomic size is 5374 base pairs). However, Sanger technique had some drawbacks 
like difficulty in handling complex genomic species, and it is still an expensive and 
time-consuming approach. Maxam and Gilbert sequencing method, which is based 
on chemical degradation steps, is another widely used first-generation sequencing 
method. However, this method is considered to be a risky sequencing approach as it 
uses the toxic chemical to sequence the data.

3.2.2  The Second Generation of Sequencing

The second generation sequencing has some specific advantages like the ability to 
generate millions of parallel short reads at a time. This technique is less expensive 
as well as less time-consuming than the first generation of sequencing, and 
sequence output is generated without the involvement of the electrophoresis 
method. Two approaches are widely used in short read sequencing. The first 
approach is based on sequencing via ligation method, and another approach is 
sequencing via synthesis (Ansorge 2009).

3.2.3  The Third Generation of Sequencing

The second generation of sequencing methods are not efficient to solve the very 
complex repetitive area of the genome. Also, aligning the samples to the reference 
genome based on short reads makes the task more complex and difficult one. To 
solve these issues, researchers have developed the new generation of sequencing 
called the third generation of sequencing. This technique is less costly as well as less 
time-consuming compared to the second generation of sequencing. This approach 
can generate long reads of sequences at a time.

3 Sequence Databases
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3.3  Classes of Biological Databases

Biological databases were broadly classified into three major categories as 
sequence, structure, and functional databases. The sequences of proteins and the 
nucleic acids are stored in sequence databases, and their solved structure of tran-
scripts, as well as proteins, are stored in structural databases. Based on their 
contents, biological databases can be divided into three classes, i.e., primary, 
secondary, and specialized databases. Primary databases incorporate authentic 
biological records (Hughes 2001). They give information of raw sequence or 
structural information submitted using the scientific community. Common exam-
ples of primary databases involve GenBank and Protein Data Bank (PDB) (Berman 
et al. 2000). Secondary databases comprise computationally processed or manu-
ally curated information, derived from original data from primary databases. 
Translated protein sequence databases containing functional annotation are an 
example of a secondary database (John et al. 2011). Likewise, specialized data-
bases contain special feature-based information that includes model organisms’ 
databases, pathways, as well as disease-related information of human being 
(Neelameghan 1997) (Fig. 3.1).

Fig. 3.1 The Arabidopsis Information Resource (TAIR), a specialized database for Arabidopsis 
thaliana species
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3.4  Types of Sequence Databases

All published genome sequence is available over the public repositories, as it is a 
requirement of every scientific journal that any published DNA or RNA or protein 
records need to be deposited in a public database. The three huge databases which 
stores and dispense the sequence information are: the NCBI databases (www.ncbi.
nlm.nih.gov), the European Molecular Biology Laboratory (EMBL) database 
(www.ebi.ac.united kingdom/ensemble), and the DNA Data Bank of Japan (DDBJ) 
databases. These databases gather all publically available DNA, RNA, and protein 
information and make it freely available (Whitfield et al. 2006). They exchange 
their data regularly, so, basically, these databases contain the same type of informa-
tion. An accession number recognizes collections in NCBI sequence databases (or 
EMBL/DDBJ). This is a unique number that is simply associated with one 
sequence. As well as the sequence itself, for every collection, the NCBI databases 
(or EMBL/DDBJ databases) also store a few extra annotation data, consisting of 
the name of the species it comes from, references to the publication describing that 
sequence, and so on (Pearson 1994). There are several kinds of sequence databases 
as described below.

3.4.1  Nucleotide Sequence Databases

3.4.1.1  EMBL/DDBJ/GenBank

The EMBL Nucleotide Sequence Database (also known as EMBL-Bank) is the pri-
mary nucleotide sequence resource maintained by the European Bioinformatics 
Institute (EBI), situated in the United Kingdom. The DNA and RNA sequences are 
submitted directly from individual researchers, genome sequencing projects, and 
patent applications. The EMBL Nucleotide Sequence Database (www.ebi.ac.uk/
embl/) is the European member of the tri-partied International Nucleotide Sequence 
Database Collaboration DDBJ/EMBL/GenBank. The EBI provides bioinformatics 
tools for database searching, sequence and homology searching, multiple sequence 
alignments, etc. The EBI provides a comprehensive set of sequence similarity algo-
rithms that is easily accessible by the EMBL-EBI web site represented in Fig. 3.3 
(www.ebi.ac.uk/Tools/).

The main data sources are large-scale genome sequencing centers, individual 
scientists, and the European Patent Office (EPO). DNA Data Bank of Japan (DDBJ) 
initiated the DNA data bank activities in 1986 at the National Institute of Genetics 
(NIG). DDBJ has been working as one of the prominent international DNA data-
bases along with EBI (European Bioinformatics Institute) in Europe and the National 
Center for Biotechnology Information (NCBI) in the USA. Direct submissions to 
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EMBL-Bank are set off by daily data exchange with collaborating databases DDBJ 
(Japan) (Tateno et al. 2000) and GenBank (USA) (Benson et al. 2000). The database 
is created in a global joint effort with GenBank (USA) and the DDBJ. The DDBJ 
collects DNA sequence data mainly from Japanese and researchers from all over the 
world. Many other tools have been developed at DDBJ from data retrievals and their 
analysis. A Web-based tool of DDBJ is SAKURA used for nucleotide sequence 
submission, annotation, and information about the submitter. Each of the three 
groups gathers a bit of the aggregate succession information announced around the 
world, and all new and refreshed database sections are traded between the groups 
once a day. The EMBL Nucleotide Succession Database is a piece of the Protein and 
Nucleotide Database (PANDA) group.

GenBank is the most comprehensive and annotated collection of publicly available 
DNA sequence and a part of the International Nucleotide Sequence Database 
Collaboration (INSDC), which consists of DDBJ, EMBL, and GenBank at NCBI 
(Fig. 3.2) (Dennis et al. 2000). The NCBI was established in 1988 as a subsidiary of 
the National Library of Medicine (NLM) at the National Institutes of Health (NIH), 
USA. The EMBL database along with GenBank and DDBJ plays the pivotal role in 
the acquisition, storage, and distribution of human genome sequence data. The coding 
sequence (CDS) features in EMBL entries mark the translation of protein- coding 
regions which are automatically added to the TrEMBL protein database (Farrell et al. 
2014). In consequence, Swiss-Prot curators subsequently generate the Swiss-Prot 
database using these entries. DDBJ is the only authorized DNA data bank in Japan for 
the collection of DNA sequences by the researchers worldwide and to issue the inter-
nationally accepted accession number in databases. In addition, DDBJ has developed 
and provided data retrieval and analysis tool (Fig. 3.3).

Fig. 3.2 Information 
stored at GenBank, EMBL, 
and DDBJ shared with 
each other
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Fig. 3.3 Overview of GenBank database
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3.4.1.2  RefSeq

The RefSeq is a commonly used database in genomic and proteomic research. The 
database entries are incorporated into NCBI’s repositories involving the nucleotide 
and protein. Records in the RefSeq database can be easily searched either by the 
keyword “RefSeq” or by their specific accession prefix (Nosek et al. 2015). The key 
characteristic of the RefSeq dataset is the combination of computation, collabora-
tion, and curation of submitted reports by NCBI. The RefSeq group works together 
with many expert groups including official nomenclature authorities such as HUGO 
Gene Nomenclature Committee (HGNC) and Zebrafish Information Network 
(ZFIN), UniProtKB, and miRBase (Gray et al. 2015; Ruzicka et al. 2015; UniProtC 
2015). The curators of RefSeq improve the quality of the database via review of QA 
test results, involvement in the selection of certain inputs for genome annotation 
processing, sequence analysis, taxonomic analysis, as well as functional review.

The RefSeq sequence records are generated by various methods depending on 
the sequence class and organism. NCBI’s prokaryotic genome annotation pipeline 
(ncbi.nlm.nih.gov/books/NBK174280/) is used for archaeal and bacterial genome 
annotation, while collaboration and manual curation sustain a small number of 
reference bacterial genomes. The channel for a subset of eukaryotes including 
fungi, protozoa, and nematodes involves propagating annotation that has been sub-
mitted with standardization format to a RefSeq copy of the submitted genome 
assembly to the International Nucleotide Sequence Database Collaboration 
(INSDC). RefSeq sequence data are retrieved by using NCBI’s nucleotide and 
protein databases, BLAST databases, NCBI’s programmatic interface, or File 
Transfer Protocol.

3.4.1.3  Ensembl

Ensembl database supports various publicly available vertebrate genome assem-
blies by providing great-quality genomic resources. Curwen and co-workers intro-
duced the Ensembl gene annotation system in 2004 (Curwen et al. 2004). Ensembl 
database was designed to annotate the species with high-quality draft genome 
assemblies, where same-species protein sequences and full-length cDNA sequences 
existed as input for identifying numerous protein-coding genes. Ensembl database 
was designed to annotate high-quality draft genome assemblies of different species 
(Fig. 3.4). The Ensembl gene annotation method is divided into four main stages: 
genome preparation, protein-coding model building, filtering, and gene set finalization 
(Curwen et al. 2004).

Ensembl does not produce the genome assemblies. However, it provides annota-
tion on genome assemblies that have been deposited into a member database of the 
International Nucleotide Sequence Database Collaboration (INSDC) such as 
GenBank (Benson et al. 2014), ENA (Cochrane et al. 2013), and DDBJ (Kosuge 
et al. 2014). Upon getting an assembly from one of the INSDC databases, further it 
is loaded into a database and prepares it for sequence alignment through running the 
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repeat masking and raw compute examination. Retrieving information about the 
protein phosphoglycerate kinase 1 (PGK1) is depicted in Fig. 3.4.

For vertebrate genome assemblies, assembly loading involves introducing a 
list of the contig (component), scaffold, and chromosome accession into an 
Ensembl core database schema (Stabenau 2004). DNA sequences for all the con-
tigs are the first pileup in the database. After that they load mappings between 
each coordinate system, using the AGP (“A Golden Path”) files provided with the 
assembly. All annotation processes of the gene are run across the top-level coor-
dinate system (Potter et  al. 2004). RepeatMasker (Smit et  al. 2013), Dust 
(Morgulis et al. 2006), and Tandem Repeat Finder (Benson 1999) (TRF) are used 
for disguising repetitive genomic sequence. Repbase repeat libraries (Jurka et al. 
2005) are useful for RepeatMasker. Several RepeatMasker analyses are run for 
each of different chosen Repbase libraries and one for the custom RepeatModeler 
library generated in-house. Raw computes (Potter et al. 2004) is a term used for 
the selection of primary annotation analyses that are run across the genome 
assembly instantly after repeat masking. The protein model building stage 
involves the alignment of protein, cDNA, EST, and RNA-seq sequences to the 
genome assembly. This phase-specific method usually relies on the availability 
of input data at the time of annotation. Then the input datasets are selected 
according to attribution, with same-species data which is preferable over data 
from other species.

Fig. 3.4 Annotation of the gene phosphoglycerate kinase 1 (PGK 1) using the Ensembl 
database
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3.4.2  Protein Sequence Database

Different types of protein sequence databases ranging from simple to complex 
sequence databases exists (Finn et al. 2006). It is the collection of sequence data 
extracted from many sources, i.e., the annotated coding region of translations in 
GenBank, third-party annotation, RefSeq, etc. Commonly used sequence databases 
are given in Table 3.1.

3.4.2.1  TrEMBL

TrEMBL database contains computer-based entries that are derived from the trans-
lation of all coding sequences present in the DDBJ/EMBL/GenBank nucleotide 
sequence database not included in Swiss-Prot. To make sure the completeness, 
TrEMBL contains several protein sequences mined from the reported literature or 
submitted directly by the users (Apweiler et al. 2004). This database allows rapid 
access to protein sequence data. The data is made, and if a match is found, a set of 
secondary patterns computed with the eMotif algorithm is used to check the signifi-
cance. It is a combination of two resources, Swiss-Protein + TrEMBL at the EBI, 
and is nominally redundant. It can be accessed at the SRS (Sequence Retrieval 
System) on the EBI web server (Emmert et al. 1994).

3.4.2.2  GenPept

The GenPept database is developed by the National Center for Biotechnology 
Information (NCBI) (Apweiler et  al. 2004). GenPept is a database of coding 
sequence features with a translation qualifier (Whitfield et al. 2006). This format is 
text-based and derived from the parent GenBank format. It comprises approxi-
mately 135,440,924 numbers of sequences which hold around 126,551,501,141 
numbers of bases (Bagchi 2012). GenBank database allots a unique GenBank iden-
tifier or GenBank accession number to each submitted sequence.

3.4.2.3  Entrez Protein

Entrez is a WWW-based data retrieval tool developed by the NCBI, which can be 
used to search for information in 11 integrated NCBI databases, including GenBank 
and its subsidiaries, OMIM, and the literature database MEDLINE, through 
PubMed. Entrez is the common front end to all the databases maintained by the 
NCBI and is an extremely easy system to use (Whitfield et al. 2006). The Entrez 
main page, as with all NCBI pages, is usually quickly downloadable and does not 
have any specific requirements for web browsers (Fig. 3.5).
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Table 3.1 Commonly used sequence databases and their descriptions

Category Name Link Description

DNA AFND allelefrequencies.net Allele Frequency Net Database
dbSNP ncbi.nlm.nih.gov/snp Database of single nucleotide 

polymorphisms
DEG essentialgene.org Database of essential genes
EGA ebi.ac.uk/ega European Genome-phenome Archive
Ensembl ensembl.org Ensembl genome browser
EUGene eugenes.org Genomic information for eukaryotic 

organisms
GeneCards genecards.org Integrated database of human genes
JASPAR jaspar.genereg.net Transcription factor binding profile database
JGA trace.ddbj.nig.ac.jp/jga Japanese Genotype-phenotype Archive
MITOMAP mitomap.org Human mitochondrial genome database
RefSeq ncbi.nlm.nih.gov/refseq NCBI Reference Sequence Database
PolymiRTS compbio.uthsc.edu/

miRSNP
Polymorphism in miRNAs and their target 
sites

1000 
Genomes

1000genomes.org A deep catalog of human genetic variation

Protein EKPD ekpd.biocuckoo.org Eukaryotic Kinase and Phosphatase 
Database

HPRD hprd.org Human Protein Reference Database
InterPro ebi.ac.uk/interpro Protein sequence analysis and classification
ModBase salilab.org/modbase Database of comparative protein structure 

models
PDB rcsb.org/pdb Protein Data Bank for 3D structures of 

biological macromolecules
PDBe ebi.ac.uk/pdbe Protein Data Bank in Europe
Pfam pfam.xfam.org Database of conserved protein families and 

domains
PIR pir.georgetown.edu Protein Information Resource
SysPTM lifecenter.sgst.cn/

SysPTM
Posttranslational modifications

UniProt uniprot.org Universal protein resource
UUCD uucd.biocuckoo.org Ubiquitin and Ubiquitin-like Conjugation 

Database
TreeFam treefam.org Database of phylogenetic trees of animal 

species
CATH cath.biochem.ucl.ac.uk Protein structure classification
CPLM cplm.biocuckoo.org Compendium of Protein Lysine 

Modifications
DIP dip.doe-mbi.ucla.edu Database of Interacting Proteins
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http://allelefrequencies.net
http://ncbi.nlm.nih.gov/snp
http://essentialgene.org
http://ebi.ac.uk/ega
http://ensembl.org
http://eugenes.org
http://genecards.org
http://jaspar.genereg.net
http://trace.ddbj.nig.ac.jp/jga
http://mitomap.org
http://ncbi.nlm.nih.gov/refseq
http://compbio.uthsc.edu/miRSNP
http://compbio.uthsc.edu/miRSNP
http://1000genomes.org
http://ekpd.biocuckoo.org
http://hprd.org
http://ebi.ac.uk/interpro
http://salilab.org/modbase
http://rcsb.org/pdb
http://ebi.ac.uk/pdbe
http://pfam.xfam.org
http://pir.georgetown.edu
http://lifecenter.sgst.cn/SysPTM
http://lifecenter.sgst.cn/SysPTM
http://uniprot.org
http://uucd.biocuckoo.org
http://treefam.org
http://cath.biochem.ucl.ac.uk
http://cplm.biocuckoo.org
http://dip.doe-mbi.ucla.edu
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3.4.2.4  UniProt

The National Institutes of Health (NIH) awarded a grant to combine the three 
protein sequence databases, Swiss-Prot, TrEMBL, and PIR-PSD databases, into 
a single resource, i.e., UniProt (Apweiler et al. 2004). It has many components: 
UniProt Knowledge Base (UniProtKB). It is a central part of UniProt Consortium’s 
activities. It is a curated protein database which comprises two sections known 
as UniProtKB/Swiss-Prot  (Boeckmann et  al. 2003) and UniProtKB/TrEMBL 
(Whitfield et al. 2006). Data retrieval using UniProt is shown in Fig. 3.6.

3.5  Sequence Submission

For researchers to enter their sequence data, GenBank implements the World Wide 
Web sequence submission tool called BankIt, and a stand-alone program is called 
Sequin. Both the software are easy to handle that facilitate the researcher to enter as 
well as submit the annotated information to GenBank. By the worldwide collabora-
tion of DDBJ and EMBL with GenBank database, the daily submission is forwarded 
to the respective databases.

Fig. 3.5 Web home page of NCBI
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Fig. 3.6 Exploring details of the protein hypoxanthine-guanine phosphoribosyltransferase 
(HGPRT) of Gallus gallus species using UniProt database

3.5.1  Sequin

Sequin has an interactive web interface as well as a graphical screen-based pro-
gram. This stand-alone tool is designed to simplify the process of sequence sub-
mission as well as gives the handling capability to the increased amount of 
information to accommodate the long reads, complex sequence data, as well as 
authentic error analysis. The process of submission of the nucleic acid sequence 
is given in Fig. 3.7.

3.5.2  BankIt

The BankIt is the simplest sequence and descriptive data submitting tool in which 
the data is directly submitted to GenBank through the international collaboration 
web interface and instantly forwarded to DDBJ and EMBL databases.

3 Sequence Databases
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3.5.3  Webin

It is the European Bioinformatics Institute submitting program which guides users 
via a sequence checklist and their forms to allow the interactive as well as descrip-
tive submission information. All the information required to create a databases 
access could be amassed during this process, i.e.:

 1. Submitter data
 2. Launch date information
 3. Sequence statistics, description, and source information
 4. Reference quotation information

This program is used to enter the data as in single as well as multiple entries.

3.6  Retrieval

3.6.1  SRS (Sequence Retrieval System)

The Sequence Retrieval System, developed in EBI, is mainly used in the text search-
ing data from multiple biological databases (Fig.  3.8). It gives the link to their 
appropriate biological information for entries that match the exploration criteria. 
This system is a highly recommended retrieval system for use.

Fig. 3.7 Steps involved in the submission of nucleic acid sequence using Sequin

V. K. Chaturvedi et al.
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Fig. 3.8 The home page of Sequence Retrieval System (SRS)

3.6.2  Entrez

NCBI developed the Entrez retrieval system. The Entrez is an organized search 
engine that provides the users to retrieve many NIH biomedical information sci-
ence databases at NCBI.  The home page of the Entrez database is shown in 
Fig. 3.9.

3.6.3  DBGET

The DBGET retrieval system is developed in the University of Tokyo. This system 
provides the multiple databases of molecular biology database entry at a time. The 
home page of DBGET is shown in Fig. 3.10.

3.7  Conclusion

The phenomenal production of genome and proteome data underscores the neces-
sity to develop and maintain biological databases. This huge-scale data provides an 
opportunity for data scientist to retrieve sequence as well as structure information 
of the data extracted from the diverse group of organisms. The raw data coming 
from the massive numbers of biological studies can provide critical insights if it is 
properly coded, stored, analyzed, and interpreted with the help of sequence 

3 Sequence Databases
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Fig. 3.10 DBGET retrieval system

Fig. 3.9 Overview of NCBI Entrez databases

V. K. Chaturvedi et al.
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databases. The sequence databases offer two kinds of fundamental benefits includ-
ing the deposition of newly resolved sequences and their comparison with previ-
ously deposited sequence repositories. In the current chapter, we provided a brief 
overview about different types of knowledge bases like primary, secondary, and 
composite biological databases along with some specialized databases which host 
information about RNA molecules, protein-protein interactions, metabolic path-
ways, and so on.
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4.1  Introduction

Structural databases are storage platforms that are devoted to the three-dimensional 
(3D) structural information of macromolecules. The 3D structure determination of 
biomacromolecules is essential for understanding phenomena such as the mecha-
nisms of disease development that can aid in the design of new drugs. Also, 3D 
structures of biomacromolecules help to find the structure-function relationship. For 
instance, a point mutation in an enzyme can lead to a serious disease; this is exem-
plified by the glucose-6-phosphate dehydrogenase mutant enzyme that has lower 
ability to bind NADP+cofactor, thus resulting in the hemolytic anemia syndrome 
(Wang et al. 2008). The availability of 3D structural information of macromolecules 
will unveil the mysterious protein-protein interaction. Also, the conserved amino 
acid analysis using 3D structural features of proteins facilitates understanding the 
structure activity relationships. Proteins are polymers of amino acid sequence; it is 
amazing that only 20 different amino acids account for all the diversities of proteins, 
which are mainly arranged into primary, secondary, tertiary, and quaternary struc-
tural forms. The primary structure refers to the linear attachment of amino acids that 
make up the polypeptide chain. Secondary structure denotes repeated and regular 
folding patterns of the main chain sequence either an alpha helix or beta sheets con-
nected via coils, turns, or loops. Tertiary structure is the characteristic three- 
dimensional shape resulted from the secondary structure elements found in the 
protein. Quaternary structure refers to two or more protein subunits that are linked 
to each other via non-covalent interaction.

The start of original structure biology dates back to the 1950s, when DNA dou-
ble helix, hemoglobin, and myoglobin structures were determined. In the following 
years, scientists paid great attention to the evaluation and study of protein structure 
in terms of the relation between protein sequence, structure, and function. In 1971, 
structure biologists held an important meeting to discuss the allowance of the public 
accessibility to structural data; as a result, the Brookhaven National Laboratory 
hosted the Protein Data Bank (Berman et al. 2012). The structural databases aim at 
keeping the information about the structures of each biomacromolecule, annotate its 
properties, and facilitate to the users finding relevant information and related struc-
tures. Table 4.1 lists the main 3D structural databases, tools, and servers that are 
essential for biologists, bioinformaticians, and even the public interested in struc-
ture biology. There are several structural databases that are available free of charge 
for public use and are responsible for archiving and organizing the 3D structural 
information of biological macromolecules and proteins such as RCSB PDB, PDBe, 
PDBj, BMRB, SCOP, and CATH. The 3D structural information can be seen as a 
primary source of data that requires effort for extraction and interpretation of the 
useful information. Therefore, other several types of databases and web servers are 
developed to add further levels of information such as comparison to other struc-
tures or focus on certain property, for example, the membrane protein databases 
(Bagchi 2012).

Y. Gaber et al.
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Table 4.1 List of important structural biological databases and related web resources for structure 
analysis

Database Use/description Link References

1. Primary structural data centers and other browsers

PDBj Protein Data Bank Japan archives 
macromolecular structures and 
provides integrated tools

https://pdbj.org/ Kinjo et al. 
(2016)

BMRD Biological Magnetic Resonance Data 
Bank (NMR), a repository for data 
from NMR spectroscopy on proteins, 
peptides, nucleic acids, and other 
biomolecules

http://www.bmrb.
wisc.edu/

Markley et al. 
(2008)

PDBe Protein Data Bank in Europe (PDBe) 
archives biological macromolecular 
structures

http://www.ebi.ac.uk/
pdbe/

Velankar et al. 
(2010) and 
Velankar et al. 
(2015)

RCSB PDB Research Collaboratory for Structural 
Bioinformatics Protein Data Bank 
archives information about the 3D 
shapes of proteins, nucleic acids, and 
complex assemblies

https://www.rcsb.org/ Berman et al. 
(2000)

PDBsum Pictorial analysis of macromolecular 
structures

www.ebi.ac.uk/
pdbsum

Laskowski 
(2007) and 
Laskowski et al. 
(2018)

2. Structure classification databases

CATH Domain classification of structures http://www.cathdb.
info/

Knudsen and 
Wiuf (2010)

SCOP SCOP2, structural and evolutionary 
classification

http://scop2.mrc-lmb.
cam.ac.uk/

Lo Conte et al. 
(2000)

3. Nucleic acid databases

NDB Nucleic acid database http://ndbserver.
rutgers.edu/

Coimbatore 
Narayanan et al. 
(2013)

RNA 
FRABASE

3D structure of RNA fragments http://rnafrabase.
cs.put.poznan.pl/

Popenda et al. 
(2010)

NPIDB 3D structures of nucleic acid-protein 
complexes

http://npidb.
belozersky.msu.ru/

Zanegina et al. 
(2015)

4. Membrane protein database

MemProtMD MemProtMD, database of membrane 
protein

http://sbcb.bioch.
ox.ac.uk/memprotmd/

Stansfeld et al. 
(2015)

5. Ligands and binding sites and metalloproteins

PeptiSite Is a comprehensive and reliable 
database of biologically and 
structurally characterized peptide-
binding sites that can be identified 
experimentally from co-crystal 
structures in the Protein Data Bank

http://peptisite.ucsd.
edu/

Acharya et al. 
(2014)

(continued)
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Table 4.1 (continued)

Database Use/description Link References

ComSin Database of protein structures inbound 
(complex) and unbound (single) states 
in relation to their intrinsic disorder

http://antares.protres.
ru/comsin/

Lobanov et al. 
(2009)

MetalPDB MetalPDB collects and allows easy 
access to the knowledge on metal sites 
in biological macromolecules

http://metalweb.cerm.
unifi.it/

Putignano et al. 
(2017)

Pocketome The Pocketome is an encyclopedia of 
conformational ensembles of druggable 
binding sites that can be identified 
experimentally from co-crystal 
structures in the wwPDB

http://www.
pocketome.org/

An et al. (2005)

MIPS A database of all the metal-containing 
proteins available in the Protein Data 
Bank

http://dicsoft2.
physics.iisc.ernet.in/
cgi-bin/mips/query.pl

Mewes et al. 
(2002)

6. Structure comparison servers

DALI The Dali server is a service used for 
comparing protein 3D structures

http://ekhidna2.
biocenter.helsinki.fi/
dali/

Holm and 
Rosenström 
(2010)

VAST+ Vector Alignment Search Tool, 
web-based tool for comparing 3D 
structure against all structures in the 
Molecular Modelling Database 
(MMDB), NCBI

https://structure.ncbi.
nlm.nih.gov/
Structure/VAST/
vastsearch.html

Madej et al. 
(2013)

CE A method for comparing and aligning 
protein structures

http://source.rcsb.org/
ceHome.jsp

Shindyalov and 
Bourne (1998)

7. Other databases

PTM-SD Posttranslational modification database http://www.dsimb.
inserm.fr/dsimb_
tools/PTM-SD/

Craveur et al. 
(2014)

PED3 Protein Ensemble Database
The database of conformational 
ensembles describing flexible proteins

http://pedb.vib.be/ Varadi and 
Tompa (2015)

GFDB Glycan Fragment Database (GFDB), 
identifying PDB structures with 
biologically relevant carbohydrate 
moieties and classifying PDB glycan 
structures based on their primary 
sequence and glycosidic linkage

http://www.
glycanstructure.org/

Jo and Im 
(2012)

ChEBI Chemical Entities of Biological 
Interest (ChEBI), a database focused 
on “small” chemical compounds

https://www.ebi.
ac.uk/chebi/

Hastings et al. 
(2015)

ChEMBL ChEMBL is a database of bioactive 
drug-like small molecules

https://www.ebi.
ac.uk/chembl/

Gaulton et al. 
(2016)
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Table 4.2 Experimental methods used for determination of macromolecule 3D structures

X-Ray crystallography
Nuclear magnetic 
resonance Cryo-EM

Experimental 
steps

1. X-rays are scattered 
by electrons in the 
atoms of crystal.
2. Then recorded on a 
detector, e.g., CCDS.
3. Phase estimation 
and calculation of 
electron density map.
4. Fit primary 
sequence to electron 
density map (model).
5. Model refinement.
6. Deposition in PDB

1. Molecules absorb 
radiofrequency radiation 
held in a strong magnetic 
field.
2. Resonance frequency 
detection influenced by 
chemical environment.
3. Collection of 
conformational 
interatomic distance 
constraints.
4. Calculation of the 3D 
structure.
5. Deposition in PDB

1. Sample is vitrified at 
liquid nitrogen temp.
2. High-energy electron 
beam passes through it 
under high vacuum.
3. Image is produced when 
transmitted electrons are 
projected to a detector
4. Structure determination

Specimen Crystals Solution Vitrified solutiona

Protein size Wide range Below 40–50 KDa >150 KDa
Contributionb >89% of PDB entries > 9% of PDB entries >1% of PDB entries
Resolution Higher resolution High resolution Significantly low

>3.5 Å
Advantages Well-developed

Accurate, easy for 
model building

Provide dynamic 
information

Easy sample preparation
Samples in its native 
environment

Disadvantages Crystallization step
Slow process

High purity sample is 
required
Less precise than X-ray
Intensive computational 
simulations

Cost
Mainly for large molecules 
and assemblies

aA vitrified solution is the solidification of a liquid into a noncrystalline or amorphous solid known 
as glass

The determination of the 3D structure for biological macromolecules is done by 
four fundamental techniques arranged in terms of familiarity and contribution as 
follows: X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, 
cryo-electron microscopy (Cryo-EM), and neutron diffraction. Table 4.2 summa-
rizes the experimental steps adopted in the first three techniques and shows main 
advantages and disadvantages of these techniques. Although these techniques are 
viable and inestimable, they cannot build an atomic structure model from scratch 
without former knowledge of the proteins’ chemical and physical properties and the 
proteins’ primary sequences.

4 Biological 3D Structural Databases



52

4.1.1  X-Ray Crystallography

X-ray protein crystallography is a branch of science that plays a vital role in many 
aspects including the determination of the 3D structure of proteins. Proteins’ 3D 
structure determination enables us to perceive the relationships between the struc-
ture and the function of these molecules and characterizes drug targets such as 
G-coupled protein receptors (Rosenbaum et al. 2009), 3D structures of enzymes, 
DNA structure, and others. In 1895, Wilhelm Roentgen eternalized his name by 
discovering a new unknown type of rays that has a shorter wavelength than the UV 
rays; he named it X-rays. In 1912 Max von Laue demonstrated that X-rays can be 
diffracted upon interacting with a crystalline material. The following year, Bragg, 
the father, and his son, could solve a very challenging step in using X-rays for struc-
ture determination that was known as the phase problem; they succeeded in paving 
the way to use X-ray diffraction to know the 3D structure of a crystalline material. 
According to the current status, X-ray protein crystallography can be summarized 
in two main successive steps:

4.1.2  Crystal Formation

The X-ray crystallography experiment is based on shooting a protein crystal with 
X-rays. The process of getting crystals can be a cumbersome task since it is some-
how a trial-and-error rather than systematic experiment. The process starts with 
obtaining a protein sample in high concentration. This step is done nowadays using 
different techniques of recombinant DNA technology. It is noteworthy to mention 
that the advancement in DNA synthesis has facilitated the process of gene cloning 
and expression. Advancement in genetics has not only facilitated the synthesis of 
genetic sequences at very reasonable cost but also assisted in controlling the gene 
expression by manipulating the molecular regulatory elements in the host cells (e.g., 
Escherichia coli, Pichia, or mammalian cells). Aided by different DNA techniques, 
the gene of interest can be overexpressed in suitable expression host to yield the 
target protein in a very good yield. Taking advantage of DNA recombinant technol-
ogy, it is possible to add tags to the overexpressed proteins that will help in the 
purification steps (e.g., multi-histidine residues to the overexpressed protein to aid 
in metal affinity chromatography or SUMO tag that helps in an expression of the 
protein in a good yield) (Gaber et al. 2016). The overexpressed protein will undergo 
a process of purification until it is obtained in a high purity as judged by SDS-PAGE 
analysis. Afterward, a concentrated protein solution will be subjected to a crystal 
formation experiment. In such experiment, the concentrated protein solution will be 
exposed to different buffer solutions with different additives such as ethylene 
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glycol; the process is run in a miniaturized setting that allows testing hundreds of 
crystallization conditions in a short time and in an automated manner. The appear-
ance of crystals in any of the tested conditions will be considered a positive hit that 
will lead to picking this specific condition and pursuing with the condition to reach 
a big crystal size of the protein. It is worth mentioning that membrane proteins are 
among the very difficult protein types to be crystallized. The difficulty comes from 
different reasons such as flexibility issues, instability, usage of detergent for extrac-
tion from cell membrane, purification, crystallization, data collection, and structure 
solution (Carpenter et al. 2008; Wlodawer et al. 2008).

4.1.3  Structure Determination

A special facility named synchrotron is used in the process of X-ray shooting. These 
facilities are located mostly in Europe, the USA, Japan, and Australia, for example, 
in Grenoble, France, and Lund, Sweden. The synchrotron is big laboratories that 
accelerate electrons to generate X-rays. The crystals obtained from the crystalliza-
tion process are kept frozen in liquid nitrogen to protect them from destruction upon 
exposure to the high-energy rays. Special types of detectors collect the diffraction 
patterns obtained from the process of crystal exposure to the X-ray. These detectors 
have witnessed continuous development in order to facilitate the data collection 
process. The obtained data are then subjected to what is known data reduction in 
order to reduce the number of data obtained. Eventually, the data obtained will lead 
to what is known as electron density map which can be described as an in silico 
representation of a 3D shape of the protein revealed from the X-ray shooting experi-
ment. The electron density map can be figured numerically by Fourier transforma-
tion (Wlodawer et al. 2008). The following step is to fit the protein primary amino 
acid sequence into the obtained electron density map providing the preliminary 3D 
model; this was a challenging task; however a plethora of programs are created to 
alleviate this issue; the most common one is COOT (Emsley et al. 2010). COOT is 
a widely used molecular graphics program for model building and biological mol-
ecule validation. It unveils atomic models and electron density maps and permits the 
manipulations of built models. Moreover, COOT supplies access to numerous vali-
dation and refinement tools. Validation of the preliminary model is vital before 
depositing final structure model into the PDB as a misinterpretation of data is liable. 
Many programs can help with this issue like PROCHECK. In addition, attempts to 
re-evaluate structures after deposition into PDB have been spotted; PDB-REDO is 
a good example of such efforts which can re-refine formerly deposited structures 
(Joosten et al. 2010).
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4.2  Macromolecular Structural Databases

4.2.1  Protein Data Bank wwPDB

The Worldwide Protein Data Bank abbreviated as wwPDB (www.wwpdb.org) is the 
central organization that takes the responsibility to maintain and archive the 3D 
structural information of biomacromolecules. wwPDB stores 141,150 records of 
3D structures (updated April 2018).

The wwPDB is composed of four partners:

 (i) Research Collaboratory for Structural Bioinformatics Protein Data Bank 
(RCSB PDB) (Berman et al. 2000)

 (ii) Protein Data Bank in Europe (PDBe) (Velankar et al. 2010)
 (iii) Protein Data Bank Japan (PDBj) (Kinjo et al. 2016)
 (iv) Biological Magnetic Resonance Data Bank (BMRB) (Markley et al. 2008)

4.2.1.1  RCSB PDB

The RCSB Protein Data Bank (RCSB PDB, http://www.rcsb.org) is the US partner 
of wwPDB, and it presents the PDB archive in an organized and easy way to explore. 
The PDB archive is accessed by the public and serves diverse disciplines that 
encompass agricultural, pharmaceutical, and biotechnological applications. It is 
worth mentioning that a majority of PDB users are of limited expertise in structural 
biology. The design of the RCSB PDB webpage allows easy navigation and pro-
vides different options to find the structure of interest, facilitate in finding similar 
structures, and jump to related contents in different databases. Figure 4.1 shows a 
screenshot of RCSB PDB webpage viewing the accession code 2BH9. The page is 
organized into sections that include different types of information as indicated 
briefly as follows:

 1. The front of the page shows the accession code 2BH9 and information about the 
authors and the deposition date.

 2. The right corner contains a hyperlink to downloadable structural files of the 
2BH9 as PDB file extension in addition to other types such as PDBx/mmCIF 
files. The typical form of storing 3D structure information is PDB file format. 
These files are typically opened with specific molecular visualization software 
such as PyMOL or YASARA (DeLano 2002; Krieger and Vriend 2014). However, 
the file can also be opened and edited – though is not advised for novice users – 
with text editor software programs such as Notepad or Microsoft Word. Figure 4.2 
shows the PDB file for 2BH9 entry as an example; the file lists all the atoms 
present in the macromolecule (protein) and its coordinates as X, Y, and Z. A typi-
cal PDB file includes a header that gives a summary of the protein in terms of its 
source, author details, and the experimental techniques used. Since the size of 

Y. Gaber et al.

http://www.wwpdb.org
http://www.rcsb.org


55

3D structure information is too big in few cases like virus capsid, a new file for-
mat – PDBx/mmCIF – is introduced to accommodate such large files.

 3. Information about the peer-reviewed publications linked to 2BH9 and the cita-
tion information.

 4. Macromolecule section that shows the CATH classification of 2BH9 and the 
accession code of 2BH9 at UniProt database.

 5. Experimental data snapshot: this section is devoted to the X-ray crystallography 
experiment and the statistical data revealing the resolution of the structure. In 
case of 2BH9, the structure was determined at a resolution of 2.5 Å, which is not 
a very good resolution. Resolution refers to the quality of the experimental data 
generated by X-ray crystallography. High-resolution structures will be deter-
mined at values of less than 1.5 Å or so; this level of accuracy of determining the 
atomic positions is high. Conversely, at a resolution of 3 Å or higher, the struc-
ture shape as global will be inferred; however the accurate positioning of the 
individual atoms is poor.

PDBe Protein Data Bank in Europe, (http://www.ebi.ac.uk/pdbe/) is the European 
equivalent to RCSB PDB. The PDBe home page provides an organized structure to 

Fig. 4.1 A screenshot of PDB webpage interface for an oxidoreductase protein, deposited under 
the accession code (2BH9), structure determined by X-ray diffraction technique at a resolution of 
2.5 Å. The source organism is Homo sapiens and overexpressed in E. coli. It also provides different 
types of downloadable file formats for the user to choose from, e.g., FASTA sequence, PDB, and 
mmCIF file formats
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ease the browsing and exploration of the content. The tab (PDBe services) allows 
the access to categorize resources according to the user’s interest and background; 
these categorized tabs are structural biologists, bioinformaticians, life scientists, 
students and teachers, medicinal chemists, journal editors and referees, and all ser-
vices tab. For example, a good training and educational material are available under 
the PDBe training tab. Among the popular services that are provided by PDBe is 
FASTA protein sequence search that enables using protein sequence in the search-
ing box. PDBeFold is a tool that finds similar structures starting from a PDB acces-
sion code as a query entry or via uploading a PDB file. To address the challenge of 
slow networking time, PDBe has developed a customized server named 
CoordinateServer that enables extraction of specific data for a given structure pro-
viding an advantage of high-speed exploration of PDB files and reduces the limita-
tion of network file transfers. The server can provide several types of data extraction 
options such as finding residues interacting with a certain ligand and others. The 
server can be accessed via the link www.ebi.ac.uk/pdbe/coordinates/. PDBe has 
developed its own molecular visualization software LiteMole 3D viewer. The tool is 

Fig. 4.2 PDB file format of the entry 2BH9 as an example, opened with Microsoft Word. A PDB 
file provides a full description of the entry such as a list of protein atoms and their 3D arrangement 
in space. For 2BH9 the header section provides information about the entry citation, authors, 
source of enzyme, and the experimental technique used in solving the structure. The file body 
provides information about the protein’s atoms; each atom is listed opposite the amino acid it 
belongs to; moreover, it provides data about X, Y, and Z coordinates that determine its spatial posi-
tion. For instance, atom number 2007 belongs to alanine in chain a number 316, and its X, Y, and 
Z coordinates are 22.785, 16.540, and 48.312, respectively
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compatible with many Internet browsers. The tool is WebGL-based viewer with too 
little memory footprint. PDBe has also developed a server that enables users to take 
part in developing their own search queries to meet their needs. The server is known 
as RESTful application programming interface (API) (Representational State 
Transfer) and is accessed via pdbe.org/api. Figure 4.3 shows a screenshot of PDBe 
webpage presenting search results for the entry 2BH9 including the experimental 
methods, the source organism, the assembly composition, and the interacting com-
pounds (ligands). Additional details are available via other tabs such as macromol-
ecules, compounds, and protein families.

PDBj The Protein Data Bank Japan (https://pdbj.org/), is one of the consortium 
members of wwPDB; the database is continuously updated to meet the user require-
ments with a focus on Asian and Middle Eastern users. The database offers a bunch 
of tools and services that assist the analysis and interpretation of structural data. 
These services include PDB deposition via an updated tool that supports X-ray, 
NMR, and EM structures. Group deposition is also available where a group ID is 
given to a set of structures that are related to each other and have been deposited at 

Fig. 4.3 A screenshot of Protein Data Bank in Europe (PDBe) webpage interface of 2BH9 entry; 
the structure determined by X-ray diffraction technique at a resolution of 2.5 Å. In addition to that, 
binding ligands NAP (nicotinamide adenine dinucleotide phosphate) and GOL (glycerol); litera-
ture; the source organism – Homo sapiens – and protein assembly composition are also provided 
besides other buttons to access a plethora of information about the entry, e.g., binding ligands and 
protein family
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the same time. PDBj also provides a tool for easy exploration of the PDB files via 
PDBj Mine, a tool for searching PDB using either accession codes, keywords, or via 
the advanced search function. Sequence-based structural alignment is also available 
via the tool known as SeSAW. The tool allows annotation of the conserved sequences 
and structural motifs found in the query proteins. eF-seek is a relatively new tool at 
PDBj that searches similar PDB files with a focus on the ligand binding sites. 
Omokage is another web-based tool for searching three-dimensional density maps 
and atomic models, with a focus on global shape similarities. ProMode Elastic data-
base allows inspection of the PDB files regarding the dynamic rather than the static 
status. The database provides dynamic analysis for the PDB structures, and anima-
tions can be generated for PDB structure. PDBj has also developed its own molecu-
lar visualization graphic software known as Molmil that enables fast and enhanced 
graphics and is compatible with JavaScript and WebGL. Figure 4.4 shows a screen-
shot of PDBj showing summary for the entry 2BH9 including information about the 
related 3D structure 1QKI, functional keywords, and biological source; also other 
buttons are found for structural details, experimental details, functional details, 
sequence neighbor, history, and downloads. In the right side, download format 
options are available and structure view asymmetric unit.

Fig. 4.4 A screenshot of Protein Data Bank Japan (PDBj) webpage interface shows detailed infor-
mative data about the entry 2BH9, represented in the main navigation menu containing many but-
tons which provide information about the entry’s summary, structural details, experimental details, 
and functional details. Moreover, it also provides different types of downloadable file formats such 
as FASTA sequence, PDB format, PDBx/mmCIF file formats, and others
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BMRB Biological Magnetic Resonance Data Bank, aims to archive and annotate 
the nuclear magnetic resonance data obtained from macromolecules and their 
metabolites. The database is unique and provides an important repository for NMR 
data for peptides, proteins, and nucleic acids. The current content (May 2018) of 
BMRB archive includes 11,628 entries of proteins/peptides, 398 entries of DNA, 
and 345 entries of RNA (Fig. 4.5). BMRB can be accessed via the URL http://www.
bmrb.wisc.edu/, which is sponsored by the University of Wisconsin-Madison, the 
National Library of Medicine, and National Institutes of Health. The website is 
organized into different tabs such as search archive, validation tools, deposit data, 
NMR statistics, programmers’ corner, spectroscopists’ corner, educational out-
reach, etc. (Ulrich et al. 2007).

NCBI Structure Resources The NCBI devotes one of its databases to the struc-
ture information. NCBI provides ENTREZ search function that allows searching 
keywords all over its databases including the structure database. The structure data-
base is available in the link https://www.ncbi.nlm.nih.gov/structure/, accessed on 
March 2018. Figure  4.6 is a screenshot of structure summary MMDB webpage 
using the PDB ID 2BH9 (MMDB ID 33089) as an example. The page displays 
information about the experimental method, resolution, source organism, similar 
structures, and biological unit (molecular graphic, interactions) for 2BH9.

Fig. 4.5 A screenshot of Biological Magnetic Resonance Data Bank (BMRB) webpage interface 
shows the recent content of the three major classes of biomacromolecules’ structures, determined by 
nuclear magnetic resonance spectroscopy, 11,628 protein/peptide entries, 398 DNA entries, and 345 
RNA entries, and the derived information: coupling constants, chemical shifts, dipolar coupling, etc
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4.3  PDBsum: Structural Summaries of PDB Entries

PDBsum available at https://www.ebi.ac.uk/pdbsum is an atlas of proteins and web 
server that helps to present the PDB entries in a visualized form. It was developed 
at the University College London (UCL) in 1995 and is aimed to provide a largely 
graphic compendium of the proteins and their complexes (Laskowski 2007; Babajan 
et al. 2011). The server can be accessed freely and is maintained by Laskowski and 
collaborators at the European Bioinformatics Institute (EBI) (Laskowski et  al. 
2018). PDBsum provides many different analytical tools for the content of the pro-
tein structure including the ligand interaction, protein-protein interaction, and 
CATH classification. The 3D structures are viewed interactively in PyMOL and 
RasMol, and users have the ability to upload their own PDB files  – could be a 
homology model – and get them analyzed. Figure 4.7 illustrates some of the picto-
rial analyses presented by PDBsum. The example given is for PDB entry 2BH9 
(G6PD-human) solved by X-ray crystallography at 2.5  Å resolution. The page 
shows different sections among which the 3D structures are presented interactively 
using molecular visualization JavaScript viewer called 3Dmol.js. This generated 

Fig. 4.6 A screenshot of Molecular Modeling Database (MMDB) webpage interface of 2BH9, 
MMDB ID (33089). The structure is resolved by X-ray diffraction technique at a resolution of 2.5 Å, 
and the source organism is Homo sapiens. Besides, it provides a chemical graph, links to literature, 
and compact structures (3D structure domains) that help with identifying similar structures
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image automatically gives only a rough idea of the sizes and locations of the clefts. 
Using the RasMol or Jmol options on the clefts tab, an idea about the clefts found 
in the structure can be obtained. PDBsum webpage also hosts useful links to data-
bases and servers such as:

 1. EC-PDB, Enzyme Structure Database, database includes approximately 73,000 
PDB enzyme structures. The database classifies the entries according to the 
Enzyme Commission (EC) as EC1, EC2, EC3, EC4, EC5, and EC6. EC3 – the 
hydrolase family – is the highest represented family among others in this data-
base including over 27,000 PDB structures.

 2. Drug port is the second server which identifies all “drug targets” in the PDB and 
any drug fragments that exist as ligands in PDB structures. The server lists all the 
drugs in alphabetical order; therefore, for example, if you are looking for acet-
aminophen, you will find it under the alphabet A in the list, and visiting its page 
will show the information of the protein targets of this specific drug and hyper-
links to other related resources such as DrugBank and others.

Fig. 4.7 A screenshot of PDBsum webpage interface of 2BH9 entry; a 2D secondary structure 
representation is shown in the figure. Tabs for protein-protein interactions, ligands, pores, tunnels, 
and others are seen in the figure. Hyperlinks to r databases like UniProt, Pfam, and Ensembl gene 
are also provided
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 3. ProFunc server: the server aims to help in the identification of protein of related 
biochemical function based on the 3D structure. The algorithm of ProFunc uses 
information such as the active site, fold matching, residue conservation, and sur-
face analysis to do the task. The server allows to look for existing PDB file or to 
upload custom PDB file (Laskowski et al. 2018).

 4. SAS, sequence annotated by the structure, is a tool by PDBsum; the tool allows 
multiple sequence alignment of a query protein that entered in different forms such 
as FASTA sequence, PDB accession code, PDB file, or UniProt accession code. 
The obtained multiple alignments can be color-coded according to different crite-
ria, such as the secondary structure assignment, ligand binding site, and number of 
hydrogen bonds to ligands or residue similarity. The alignment can be adjusted 
according to the user needs using selection and sequence similarity filters.

4.4  sc-PDB: A 3D Database of Ligandable Binding Sites

The protein-ligand interaction is very important in determining the critical amino 
acids in the protein structure that interact with ligands, and based on this informa-
tion, designing new ligands (drugs) is possible. The sc-PDB database archives and 
illustrates the ligandable binding sites found in protein structures that are listed in 
the PDB repository. The database was launched in 2004 and is accessible at http://
bioinfopharma.u-strasbg.fr/scPDB/. The Sc-PDB provides specialized structure 
files that serve the need to do receptor-ligand docking studies. Currently, the sc- 
PDB stores 16,034 entries (binding sites) extracted from 4782 unique proteins and 
6326 exclusive ligands. The sc-PDB database provides annotated druggable binding 
sites, the coordinates for protein-ligand complexes, and the physicochemical and 
geometrical properties of the ligands. It also provides a chemical description of 
ligands and functional explanation of the proteins. Metal ions are not included in 
sc-PDB, and the ligands included are classified into four main categories: (i) nucle-
otides of size <4 bases, (ii) peptides <9 amino acids, (iii) cofactors, and (iv) organic 
compounds. The binding site can be defined as the protein residues (including 
amino acids, cofactors, and important metal ions) that are in contact with one atom 
of the ligand within a distance of 6.5 Å. The sc-PDB is very useful in drug design 
tasks since it can predict receptors for any ligand and it can analyze different struc-
tural cavities and establish the interacting points between a ligand and the active site 
of the receptor (Desaphy et  al. 2014; Kellenberger et  al. 2006). Ligands can be 
searched using the chemical structure draw applet provided by ChemAxon. 
Figure  4.8 is a screenshot of the sc-PDB webpage showing the total number of 
entries (16034) including 4782 proteins and 6326 ligands. The database home page 
shows four buttons: ligand, protein, binding mode, and binding site. The database 
archive can be searched using the search anything box, PDB ID box, or protein 
UniProt accession code.
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4.5  PDBTM: Protein Data Bank of Transmembrane Proteins

Membrane proteins account for 20–30% of the all human proteins which partici-
pate in vital cellular processes and enzymatic reactions. Membrane proteins rep-
resent 60% of all druggable proteins in human (Yin and Flynn 2016). The 
experimental 3D structure determination of these proteins is difficult due to the 
complexity of obtaining soluble expressed proteins. Since the publication of the 
first membrane protein 3D structure in 1985, the number of membrane proteins 
in wwPDB is increasing slowly but steadily. Still, the current representation of 
the membrane proteins in PDB is low. There was a need to have specialized data-
bases for membrane proteins. The PDBTM database is the first up-to-date and 
inclusive TM protein consisting of a list of PDB files of transmembrane proteins 
(Kozma et al. 2012). The database was launched in 2004 and is available at http://
pdbtm.enzim.hu; PDBTM archives more than 3000 transmembrane proteins; 
most of them have the well-known alpha-helical structures. PDBTM is utilizing 
a special algorithm named TMDET to find transmembrane proteins found in the 
PDB based on the structural information. The algorithm is also able to determine 
the spatial arrangement of these proteins inside the lipid bilayer. PDBTM 

Fig. 4.8 A screenshot of sc-PDB webpage interface. It shows (16034) three-dimensional struc-
tures of binding sites found in the Protein Data Bank (PDB) and includes (4782) unique proteins 
and (6326) unique ligands. In addition, it provides the main navigation window for the user to navi-
gate and switch views directly (ligand, protein, binding mode, and binding site)
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website allows to browse its content by the type of the membranes (alpha or beta 
structures), and it also permits to download datasets of TM protein structures. 
Figure 4.9 shows the home page of PDBTM and the number of transmembrane 
proteins that is archived until May 2018 (a total of 3227, including 2848 alpha 
structure and 366 beta structure). The search field using PDB ID exists in the 
right side, while the left side includes six vertical tabs (home, search, download, 
statistics, documents, and help).

4.6  CATH Database

CATH (Class, Architecture, Topology, Homology) database classifies the protein 
domains according to the amino acid sequence and the structural and the functional 
properties. CATH provides a big deal of help for researchers with proteins that have 
insignificant similarity in sequences yet can be functionally and structurally related. 
CATH is also a valuable destination for both bioinformatician and biologists. 
Inexperienced users benefit from the user-friendly web interface; on the other hand, 
bioinformaticians seeking for analysis of a huge number of domains can find com-
plete downloadable datasets. Therefore CATH has the potentials to be a really valu-
able and promising recourse. In CATH, domains are classified hierarchically into 

Fig. 4.9 A screenshot of Protein Data Bank of Transmembrane Protein (PDBTM). It shows a 
number of transmembrane proteins deposited in PDBTM; total number is 3227 entries: 2848 alpha 
structured and 366 beta structured
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four levels named as class (C), architecture (A), topology (T), and homologous 
superfamily (H), hence giving the acronym CATH (Knudsen and Wiuf 2010):

 (i) C level: categorize domains into four main groups according to secondary 
structures as alpha mainly, beta mainly, α-β mixed, and finally category group 
domains with few alpha and beta structures.

 (ii) A level: categorize domains by the general orientation of the secondary 
structures.

 (iii) T level: categorization depends upon the connectivity of secondary structures.
 (iv) H level: categorization depends upon a combination of sequence similarity and 

structural similarity.

Exploration of the contents of the databases can also be done via different links 
given in the web server, for example, (1) searching by domain ID or keywords, (2) 
searching by the sequence in FASTA format, and (3) exploring the database from 
the hierarchy top and download datasets. A list encompasses the names of all 
domains in CATH – along with their individual groupings – which is likewise acces-
sible, and the amino acid sequences of all domains ordered in CATH are open for 
download in the FASTA file format (Knudsen and Wiuf 2010). Figure 4.10 is the 
search results for the PDB ID (2BH9); the figure shows the matching CATH super-
families and the matching CATH domains.

Fig. 4.10 A screenshot of CATH/Gene3D webpage interface of the entry 2BH9. The websites pro-
vide different ways of search: text or ID, search by sequence, or search by the structure. In the cur-
rent example, the screenshot shows the matching CATH superfamilies and domains related to 2BH9
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CATH/Gene3D database is complementary to the original CATH database; it is 
available at http://www.cathdb.info/; it classifies 95 million protein domains into 
6119 superfamilies (Dawson et al. 2016). CATH/Gene3D scans the protein sequence 
information found in UniProt database; it also classifies the structural domains found 
in the structural files in wwPDB. Annotation of the structure is created using hidden 
Markov models making use of the domain families deposited in CATH. Moreover, 
all information is downloadable in an XML file format, enabling users to perform a 
complex search at their computers (Yeats et al. 2006). Furthermore, Gene3D exploits 
the data in CATH to predict the position of structural domains on a host of protein 
sequences available at wwPDB which allows inclusion of informative annotations 
such as information, function, and residues of the active site. It also provides a broad 
prediction of globular domains in proteins (Dawson et al. 2016; Dawson et al. 2017).

4.7  SCOP (Structural Classification of Proteins) Database

Structural Classification of Protein (SCOP), available at http://scop.mrc-lmb.cam.
ac.uk/scop/, is a database with a focus on structure and evolutionary classifications 
of proteins. SCOP adopts the following hierarchical scheme to classify protein 
structures:

 A. Family: similar protein structures are assembled into families based on two cri-
teria that suggest a common evolutionary source; the first criterion is a similarity 
in protein sequence, and the second criterion is a similarity in structure and 
function.

 B. Superfamily: families whose proteins have little sequence similarity yet their 
function and structure imply typical evolutionary origin are clustered together in 
superfamilies.

 C. Common fold: protein families and subfamilies that have similar secondary 
structures and same topological associations are assigned to have a common 
fold.

 D. Class: the distinctive folds have been gathered into classes.

The majority of the folds are grouped into one of the five structural classes:

 1. All –α: structures that are basically formed of α-helices.
 2. All –β: structures that are basically formed of β-sheets.
 3. α/β: structures formed of α-helices and β-strands.
 4. α  +  β: structures formed of α-helices and β-strands are to a great extent 

segregated.
 5. Multi-domain: structures with domains of various classes and for which no 

homologs are yet known.

SCOP is updated into the new version SCOP2, where improvements in the clas-
sification criteria were done. SCOP2 classification is based on four criteria, i.e., the 
protein type, the evolutionary analysis, the structure class, and the protein relation-
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ships. The protein types indicate four possible types of proteins, i.e., membrane, 
soluble, fibrous, and intrinsically disordered proteins. The evolutionary analysis 
considers the classification of proteins according to the major evolutionary events 
that had have happened to certain protein class. The third criterion is the secondary 
structure arrangement of the protein as an efficient way in the classification of pro-
tein structures. The protein relationships are unique to SCOP2 compared to 
SCOP.  The database is accessible via the link http://scop2.mrc-lmb.cam.ac.uk/. 
SCOP2 can be explored in two different ways: SCOP2-graph and SCOP2-browser. 
SCOP2-graph shows graphical representation for the database entries, while 
SCOP2-browser allows the exploration of the SCOP2 contents according to the four 
classification criteria mentioned above in addition to a possibility of keyword 
search. The SCOP2 additionally provides hyperlinks whenever possible to each 
entry archived to the external databases such as UniProt and PDB and the original 
SCOP record (Andreeva et al. 2007; Hubbard et al. 1997). Figure 4.11 is a screen-
shot of SCOP2-graph database webpage interface. It illustrates a hierarchal classifi-
cation of protein domains by the structure and evolutionary relevance.

Fig. 4.11 A screenshot of SCOP2-graph database webpage interface. It illustrates a hierarchal 
classification of protein domains in accordance with the structure and evolutionary relevance; 
these relationships appear as compound node networks; also, it provides accessible links to the 
SCOP entries and hence provides a possibility for the users to compare both databases
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4.8  Structure Comparison Servers

Finding homologous protein structure is very important in the area of structural 
bioinformatics. Therefore early efforts were carried out to device algorithms for 
structural alignment; in 1960, Perutz et  al. described the structure similarity of 
hemoglobin and myoglobin (Perutz et al. 1960). It is known that protein structures 
are more conserved compared to protein sequences; this is the base of evolutionary 
analysis of related protein structures. It is important to differentiate between two 
terms, i.e., structure superposition and structure alignment. Structure superposition 
refers to the spatial fitting of two structures that already have similar starting points – 
usually in the C-alpha backbone – which work as guiding points in the process of 
fitting these two structures over each other. The aim is to find the best match between 
the two structures as judged by the root-mean-square deviation (RMSD) value. 
RMSD is a measure of the average distance between atoms of two or more superim-
posed protein structures and is measured in angstrom. Structure alignment does not 
require prior information of equivalent spatial positions of two structures. However, 
the alignment algorithm tries to find structures between two 3D structures or more 
based on the 3D information. There are few clear reasons behind the effort for find-
ing similar protein structures:

 1. To help in structure classification and fold assignment
 2. To aid the process of function identification, since similar protein structures can 

provide a wealth of information about the function of an unknown protein
 3. To aid, in the process of homology or comparative modeling, the process of pre-

dicting protein 3D structure based on similarity to already known 3D structure
 4. To aid in the tasks of protein engineering (Gaber 2016; Pavelka et al. 2009)

CATH and SCOP databases were used in the endeavors of finding similar struc-
tures based on detection of similar structural domains. Currently, some online serv-
ers and tools are used in finding homologous 3D structures of proteins; among these 
servers are:

 1. Combinatorial Extension (CE) is a tool for aligning and comparing protein struc-
tures deposited into RCSB PDB (Shindyalov and Bourne 1998). CE is an indis-
pensable part of identifying and annotating protein structures with unknown 
function. The comparison can be performed on a complete PDB or on structurally 
representative subsets of proteins. Also, it can be performed in two ways either 
using a structural representative subset of protein or on the full PDB records. The 
most direct task is to locate every single similar structure to a starting protein that 
exceeds 30 residues long and exists in the wwPDB. The superimposed structures 
can be visualized with programs such as RasMol and Protein Explorer (utilizing 
Chime) or in an exceptionally outlined Java applet Compare3D.  The applet 
enables the user to investigate the two similarities and differences between the 
aligned structures both from a sequence and structure viewpoint. It is worth men-
tioning that the site is always subjected to modification and editing by the Bourne 
Laboratory staff to keep it up to date (Shindyalov and Bourne 2001).
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 2. PDBeFold is an online server that is provided by EMBL-EBI (European 
Molecular Biology Laboratory-European Bioinformatics Institute). PDBeFold 
can be accessed from the PDBe webpage and is considered a structure alignment 
server that allows both pairwise or multiple 3D alignments. Searching homolo-
gous structures can be initiated by providing the PDB accession code.

 3. VAST+ is online server hosted by NCBI and is devoted to finding similar 3D 
structures; the server does not rely on sequence comparison; hence it can find 3D 
structures of too low sequence similarity. Figure  4.12 shows the interface of 
VAST+ using the PDB entry 2BH9.

 4. DALI web server was established in 2000 at Helsinki Lab; the server aims to 
compare 3D structures of proteins to those found in the Protein Data Bank. A 
new version of DALI known as DALI Lite has been released to do pairwise 
structural superimposition. Figure 4.13 shows a screenshot of DALI structure 
comparison server exemplified by a search using the entry 2BH9. DALI website 
displays nine horizontal tabs as follows: about, PDB search, PDB25, pairwise, 
all against all, gallery, references, statistics, and tutorial.

Fig. 4.12 A screenshot of VAST+ webpage interface of the entry 2BH9. It provides information 
about macromolecules that share similar three-dimensional structures. Concerning 2BH9, there is 
2308 structure similar to it. It is worth noting that filters can be used to limit the number of match-
ing molecules at will. The RMSD values shown indicate the structural similarity between the query 
2BH9 and the retrieved hits; lower RMSD values indicate high structural similarity
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4.9  Conclusion

Structural databases are providing essential information not only to the scientific 
community but also to the public. The content of such databases is a really pre-
cious information; precious is not just a metaphor; to explain, solving 1000 pro-
tein structures costs 150 million USD and the effort of 180 scientists (Ledford 
2010). Fortunately, the advancement in the computational sciences allowed struc-
tural databases to be explored by both experts and novice users to navigate and 
easily extract the required information from its content. It is also very feasible to 
find related contents in the different database based on the interconnectedness 
between the different databases. The availability of such data allowed new gen-
erations of databases to evolve and to provide new layers of information that help 
in solving serious problems such as designing new drugs or engineering new 
proteins for different purposes.

References

Acharya C, Kufareva I, Ilatovskiy AV, Abagyan R (2014) PeptiSite: a structural database of peptide 
binding sites in 4D. Biochem Biophys Res Commun 445(4):717–723

An J, Totrov M, Abagyan R (2005) Pocketome via comprehensive identification and classification 
of ligand binding envelopes. Mol Cell Proteomics 4(6):752–761

Fig. 4.13 A screenshot of DALI server webpage interface and example input of the entry 2BH9 is 
shown. The website provides three different types of searches: PDB search, pairwise comparison, 
and all-against-all comparison which performs a database search comparing a query structure sup-
plied by the user against the database of known structures (PDB) and returns the list of structural 
neighbors using the e-mail

Y. Gaber et al.



71

Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2007) 
Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 
36(suppl_1):D419–D425

Babajan B, Chaitanya M, Rajsekhar C, Gowsia D, Madhusudhana P, Naveen M et  al (2011) 
Comprehensive structural and functional characterization of Mycobacterium tuberculosis 
UDP-NAG enolpyruvyl transferase (Mtb-MurA) and prediction of its accurate binding affini-
ties with inhibitors. Interdiscip Sci 3(3):204–216. https://doi.org/10.1007/s12539-011-0100-y

Bagchi A (2012) A brief overview of a few popular and important protein databases. Computat 
Mol Biosci 2(04):115

Berman HM, Bhat TN, Bourne PE, Feng Z, Gilliland G, Weissig H, Westbrook J  (2000) The 
Protein Data Bank and the challenge of structural genomics. Nat Struct Mol Biol 7:957–959

Berman HM, Kleywegt GJ, Nakamura H, Markley JL (2012) The Protein Data Bank at 40: reflect-
ing on the past to prepare for the future. Structure 20(3):391–396

Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane 
protein crystallography. Curr Opin Struct Biol 18(5):581–586

Coimbatore Narayanan B, Westbrook J, Ghosh S, Petrov AI, Sweeney B, Zirbel CL, Leontis NB, 
Berman HM (2013) The nucleic acid database: new features and capabilities. Nucleic Acids 
Res 42(D1):D114–D122

Craveur P, Rebehmed J, de Brevern AG (2014) PTM-SD: a database of structurally resolved and 
annotated posttranslational modifications in proteins. Database:2014

Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P et  al (2016) CATH: an expanded 
resource to predict protein function through structure and sequence. Nucleic Acids Res 
45(D1):D289–D295

Dawson NL, Sillitoe I, Lees JG, Lam SD, Orengo CA (2017) CATH-Gene3d: generation of the 
resource and its use in obtaining structural and functional annotations for protein sequences. 
Protein Bioinforma 1558:79–110

DeLano WL (2002) The PyMOL molecular graphics system. http://pymol.org
Desaphy J, Bret G, Rognan D, Kellenberger E (2014) sc-PDB: a 3D-database of ligandable bind-

ing sites—10 years on. Nucleic Acids Res 43(D1):D399–D404
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta 

Crystallogr D Biol Crystallogr 66(4):486–501
Gaber Y (2016) In-silico smart library design to engineer a xylosetolerant hexokinase variant. Afr 

J Biotechnol 15(21):910–916
Gaber Y, Mekasha S, Vaaje-Kolstad G, Eijsink VG, Fraaije MW (2016) Characterization of a 

chitinase from the cellulolytic actinomycete Thermobifida fusca. Biochim Biophys Acta 
1864(9):1253–1259

Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, 
Bellis LJ, Cibrián-Uhalte E (2016) The ChEMBL database in 2017. Nucleic Acids Res 
45(D1):D945–D954

Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, 
Mendes P, Steinbeck C (2015) ChEBI in 2016: improved services and an expanding collection 
of metabolites. Nucleic Acids Res 44(D1):D1214–D1219

Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D.  Nucleic Acids Res 
38(suppl_2):W545–W549

Hubbard TJ, Murzin AG, Brenner SE, Chothia C (1997) SCOP: a structural classification of pro-
teins database. Nucleic Acids Res 25(1):236–239

Jo S, Im W (2012) Glycan fragment database: a database of PDB-based glycan 3D structures. 
Nucleic Acids Res 41(D1):D470–D474

Joosten RP, Te Beek TA, Krieger E, Hekkelman ML, Hooft RW, Schneider R et al (2010) A series 
of PDB related databases for everyday needs. Nucleic Acids Res 39(suppl_1):D411–D419

Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D (2006) sc-PDB: an annotated data-
base of druggable binding sites from the Protein Data Bank. J Chem Inf Model 46(2):717–727

Kinjo AR, Bekker G-J, Suzuki H, Tsuchiya Y, Kawabata T, Ikegawa Y, Nakamura H (2016) Protein 
Data Bank Japan (PDBj): updated user interfaces, resource description framework, analysis 

4 Biological 3D Structural Databases

https://doi.org/10.1007/s12539-011-0100-y
http://pymol.org


72

tools for large structures. Nucleic Acids Res 45:D282–D288. https://doi.org/10.1093/nar/
gkw962

Knudsen M, Wiuf C (2010) The CATH database. Hum Genomics 4(3):207
Kozma D, Simon I, Tusnady GE (2012) PDBTM: Protein Data Bank of transmembrane proteins 

after 8 years. Nucleic Acids Res 41(D1):D524–D529
Krieger E, Vriend G (2014) YASARA View—molecular graphics for all devices—from smart-

phones to workstations. Bioinformatics 30(20):2981–2982
Laskowski RA (2007) Enhancing the functional annotation of PDB structures in PDBsum using 

key figures extracted from the literature. Bioinformatics 23(14):1824–1827
Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural 

summaries of PDB entries. Protein Sci 27(1):129–134
Ledford H (2010) Big science: the cancer genome challenge. Nat News 464(7291):972–974
Lo Conte L, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C (2000) SCOP: a structural 

classification of proteins database. Nucleic Acids Res 28(1):257–259
Lobanov MY, Shoemaker BA, Garbuzynskiy SO, Fong JH, Panchenko AR, Galzitskaya OV (2009) 

ComSin: database of protein structures in bound (complex) and unbound (single) states in rela-
tion to their intrinsic disorder. Nucleic Acids Res 38(suppl_1):D283–D287

Madej T, Lanczycki CJ, Zhang D, Thiessen PA, Geer RC, Marchler-Bauer A, Bryant SH (2013) 
MMDB and VAST+: tracking structural similarities between macromolecular complexes. 
Nucleic Acids Res 42(D1):D297–D303

Markley JL, Ulrich EL, Berman HM, Henrick K, Nakamura H, Akutsu H (2008) BioMagResBank 
(BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting 
biomolecular NMR depositions. J Biomol NMR 40(3):153–155

Mewes H-W, Frishman D, Güldener U, Mannhaupt G, Mayer K, Mokrejs M, Morgenstern B, 
Münsterkötter M, Rudd S, Weil B (2002) MIPS: a database for genomes and protein sequences. 
Nucleic Acids Res 30(1):31–34

Pavelka A, Chovancova E, Damborsky J (2009) HotSpot Wizard: a web server for identification of 
hot spots in protein engineering. Nucleic Acids Res 37(suppl_2):W376–W383

Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North A (1960) Structure of haemo-
globin: a three-dimensional Fourier synthesis at 5.5-Å resolution obtained by X-ray analysis. 
Nature 185(4711):416

Popenda M, Szachniuk M, Blazewicz M, Wasik S, Burke EK, Blazewicz J, Adamiak RW (2010) 
RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the 
three-dimensional fragments within RNA structures. BMC Bioinformatics 11(1):231

Putignano V, Rosato A, Banci L, Andreini C (2017) MetalPDB in 2018: a database of metal sites in 
biological macromolecular structures. Nucleic Acids Res 46(D1):D459–D464

Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein- 
coupled receptors. Nature 459(7245):356

Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial exten-
sion (CE) of the optimal path. Protein Eng 11(9):739–747

Shindyalov IN, Bourne PE (2001) A database and tools for 3-D protein structure compari-
son and alignment using the Combinatorial Extension (CE) algorithm. Nucleic Acids Res 
29(1):228–229

Stansfeld PJ, Goose JE, Caffrey M, Carpenter EP, Parker JL, Newstead S, Sansom MS (2015) 
MemProtMD: automated insertion of membrane protein structures into explicit lipid mem-
branes. Structure 23(7):1350–1361

Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J et al (2007) BioMagResBank. 
Nucleic Acids Res 36(suppl_1):D402–D408

Varadi M, Tompa P (2015) The protein ensemble database. Intrinsically disordered proteins stud-
ied by NMR spectroscopy. Springer, pp 335–349

Velankar S, Alhroub Y, Alili A, Best C, Boutselakis HC, Caboche S et al (2010) PDBe: protein data 
bank in Europe. Nucleic Acids Res 39(suppl_1):D402–D410

Y. Gaber et al.

https://doi.org/10.1093/nar/gkw962
https://doi.org/10.1093/nar/gkw962


73

Velankar S, van Ginkel G, Alhroub Y, Battle GM, Berrisford JM, Conroy MJ, Dana JM, Gore SP, 
Gutmanas A, Haslam P (2015) PDBe: improved accessibility of macromolecular structure data 
from PDB and EMDB. Nucleic Acids Res 44(D1):D385–D395

Wang XT, Chan TF, Lam V, Engel PC (2008) What is the role of the second “structural” NADP+-
binding site in human glucose 6-phosphate dehydrogenase? Protein Sci 17(8):1403–1411

Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non- 
crystallographers, or how to get the best (but not more) from published macromolecular struc-
tures. FEBS J 275(1):1–21

Yeats C, Maibaum M, Marsden R, Dibley M, Lee D, Addou S, Orengo CA (2006) Gene3D: mod-
elling protein structure, function and evolution. Nucleic Acids Res 34(suppl_1):D281–D284

Yin H, Flynn AD (2016) Drugging membrane protein interactions. Annu Rev Biomed Eng 18:51
Zanegina O, Kirsanov D, Baulin E, Karyagina A, Alexeevski A, Spirin S (2015) An updated ver-

sion of NPIDB includes new classifications of DNA–protein complexes and their families. 
Nucleic Acids Res 44(D1):D144–D153

4 Biological 3D Structural Databases



75© Springer Nature Switzerland AG 2019 
N. A. Shaik et al. (eds.), Essentials of Bioinformatics, Volume I, 
https://doi.org/10.1007/978-3-030-02634-9_5

Chapter 5
Other Biological Databases

Divya Mishra, Vivek Kumar Chaturvedi, V. P. Snijesh, Noor Ahmad Shaik, 
and M. P. Singh

Contents

5.1  Introduction  76
5.2  Gene or Genome Annotation Databases  77

5.2.1  GO/GOA Databases  77
5.2.2  UCSC Genome Browser: Annotation Database  78

5.3  Protein Annotation Databases  78
5.3.1  PRIDE Archive  78
5.3.2  SWISS-2DPAGE  79
5.3.3  Domain Databases  80

5.4  Network Databases  81
5.4.1  IntAct  81

5.5  Pathway Databases  83
5.5.1  Kyoto Encyclopedia of Genes and Genomes  83
5.5.2  BioCyc  85
5.5.3  Ingenuity Pathways Knowledge Base  85
5.5.4  Reactome Pathway Databases  85
5.5.5  Other Pathway Databases  86

5.6  Drug Databases  86
5.6.1  DrugBank  86
5.6.2  PharmGKB  87
5.6.3  ChEBI  89
5.6.4  PubChem  90
5.6.5  ZINC Database  90

5.7  Specialized Database  91
5.7.1  Model Organism Databases  91

D. Mishra 
Centre of Bioinformatics, University of Allahabad, Allahabad, India 

V. K. Chaturvedi · M. P. Singh (*) 
Centre of Biotechnology, University of Allahabad, Allahabad, India 

V. P. Snijesh 
Innov4Sight Health and Biomedical System Private Limited, Bangalore, India 

N. A. Shaik 
Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University,  
Jeddah, Saudi Arabia
e-mail: nshaik@kau.edu.sa

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02634-9_5&domain=pdf
mailto:nshaik@kau.edu.sa


76

5.7.2  IntEnz  91
5.7.3  EPD  91
5.7.4  TRANSFAC  93

5.8  Scientific Literature Database  93
5.8.1  PubMed  93
5.8.2  SCI (Science Citation Index)  94
5.8.3  Google Scholar  94

5.9  Conclusion  94
 References  95

5.1  Introduction

The current era of next-generation genome sequencing demands the storage of 
huge amount of biological data in specific categorized manner. As biology has 
progressively revolutionized to a data-rich science, the requirement for storing and 
communicating large datasets has grown tremendously. Biological databases 
developed as a response to the massive data generated by DNA sequencing tech-
nologies. They are complex, heterogeneous, and dynamic. Biological databases 
can be further classified into sequence, structure, and functional databases. 
Sequence database stores nucleic acid and protein sequences, and structure data-
base stores the structures of RNA and proteins. Functional databases deliver data 
on the functional role of gene products, for instance, enzyme activities or biologi-
cal pathways.

The data can be submitted directly to the database, and the submitted data are 
indexed, optimized, and organized. The data deposited in biological databases is 
structured for optimal analysis and comprises of raw and annotated data. Data 
indexing, organization, and optimization support researchers to identify significant 
data by making it accessible in a format that is machine or computer readable. 
Sequences and structures are only among the several different types of data required 
in the practice of the modern molecular biology. In this chapter, we discuss on pro-
tein identification and other biological databases which combine different primary 
and secondary database sources.

Identifying protein with its specific characteristics is a significant step in the 
field of proteomics research. It may lead to identification of candidate signatures or 
novel biomarkers associated with certain diseases based on their characteristics in 
the sample (McHugh and Arthur 2008). Identification of proteins is taken as a pri-
mary step to illuminate the biological information of an organism via studying its 
protein patterns (Apweiler et  al. 2004). Other biological database includes data 
types like two-dimensional gel electrophoresis images of protein expression, muta-
tions, and polymorphism in molecular sequences and structures, metabolic path-
ways and molecular interactions, functional enrichment, genetic maps, and 
physiochemical data.
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5.2  Gene or Genome Annotation Databases

5.2.1  GO/GOA Databases

The biological databases may contain diverse kinds of information extracted from 
various molecular resources; hence there is a need to integrate the biological infor-
mation in a way that it gives meaningful insight to biologists (Ashburner et  al. 
2000). The major part of the data integration efforts is the development and use of 
observation guideline such as ontologies. The availability of an overwhelming 
amount of protein data generated from different experimental projects necessitates 
the need to organize and describe the data in a unique and standard vocabulary for 
conducting future investigations (Evelyn et al. 2004). The Gene Ontology Annotation 
(GOA) databases provide many aspects of information, i.e., it gives consistent terms 
for the gene product in multiple databases and also provides the standardized clas-
sification of sequence. The tools available in the database are QuickGO, InterPro, 
AmiGO, Ensembl, and EntrezGene. Annotation of the gene using QuickGO is rep-
resented in Fig. 5.1. It has three leading objectives as follows: (Apweiler et al. 2004) 
to establish an array of complete vocabulary, i.e., ontologies to explain primary 
realm of molecular biology, (Aranda et al. 2009) to employ GO terms to the annota-
tion of the gene or their products in the databases, and (Ashburner et al. 2000) to 

Fig. 5.1 Gene ontologies extracted using QuickGO for the protein interleukin-6 (IL-6) where F, P, 
and C under GO term represent molecular function, biological process, and cellular component, 
respectively
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consolidate the public domain that permits the worldwide access to the ontologies 
(Camon et al. 2004). The Gene Ontology Annotation database can be accessed at 
www.ebi.ac.uk/GOA.

5.2.2  UCSC Genome Browser: Annotation Database

UCSC genome browser is an online as well as stand-alone web-based tool main-
tained by the University of California. This browser is designed to maintain the 
user-specified information accessible at any scale to conduct sequence annotations. 
It has a graphical viewing tool that helps to screen the specified region of the 
genome. The UCSC genome browser provides the information as in diverse array 
known as “Tracks,” including the gene prediction, mapping, as well as aligned 
genomic information. This browser site anchors the collection of genomic analysis 
tools that include the full aspects of GUI web interface to extract the information 
from this database. It has several online tools such as FAST sequence alignment and 
BLaTM tool that help to find the sequences from massive genomic sequences.

5.3  Protein Annotation Databases

5.3.1  PRIDE Archive

The PRoteomics IDEntification (PRIDE) database was created in 2004 at the 
European Bioinformatics Institute (EBI). Since 2014, the original database was 
renamed to PRIDE Archive and can be accessed via www.ebi.ac.uk/pride/archive. It 
acts as central resource for deposition of mass spectrometry (MS)-based proteomics 
data and provides the easy access to experimental data to scientific communities 
(Jones et al. 2007). A simple search query for the terms breast cancer and Homo 
sapiens is depicted in Fig. 5.2. PRIDE Archive is one of the core members in the 
ProteomeXchange (PX) consortium (www.proteomexchange.org), which allows 
the users to submit MS-based proteomics data to the public repository. The data 
submitted to PRIDE archive via PX are managed and handled by expert biocurators. 
The public datasets deposited in PRIDE can be explored using ProteomeCentral 
which is a portal for ProteomeXchange datasets. The implementation of PX with 
PRIDE has produced an exceptional rise in the number of datasets. Currently, data-
sets in PRIDE archive contain 9315 projects and 84,479 assays.

PRIDE is the Proteomics Standards Initiative (PSI) submissive public archive for 
proteomic description in which any proteome laboratory data is accepted for sub-
mission. Its main aim is to standardize the data submission as well as dissemination 
of proteomics information worldwide (Jones et al. 2007). Moreover, PRIDE reposi-
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tory contains the information related to peptides, identification of proteins, 
 posttranslational modifications and supporting spectral evidence, relevant measure 
values, comparable mass spectra, program scripts, and other biological information 
related to proteome which is contributed by submitters. PRIDE provides inbuilt 
tools like PRIDE Inspector and PRIDE Converter. PRIDE Inspector is a desktop 
application that helps researchers to visualize and analyze MS datasets, such as 
mzML, mzIdentML, and PRIDE XML. PRIDE Converter allows the user to convert 
common mass spectrometry data formats into PRIDE XML.

5.3.2  SWISS-2DPAGE

The SWISS-2DPAGE database was developed in 1993 and maintained at the clini-
cal laboratory of Geneva University Hospital. The database holds proteins identified 
on various two-dimensional polyacrylamide gel electrophoresis using microse-
quencing, immunoblotting, gel comparison, and amino acid composition methods 
(Hoogland et  al. 1999). Each entry in the database has textual information on a 
protein that include mapping procedures, physiological and pathological informa-
tion, bibliographical references, and experimental data like isoelectric point, molec-
ular weight, amino acid composition, and peptide masses. Apart from the textual 
information, the database also provides images of various 2D PAGE and SDS-PAGE 
which depicts experimental protein localization and theoretical region calculated 

Fig. 5.2 Representation of the query breast cancer and Homo sapiens via PRIDE archive
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from the protein sequence (Fig.  5.3). The data in the textual format follows the 
parameters used in the Swiss-Prot protein sequence database like ID (identification) 
and the AC (accession number). However, three parameter types are unique to 
SWISS-2D PAGE like MasTer (MT), images (IM), and two-dimensional (2D) gel. 
MasTer (MT) represents the type of map on which proteins are identified and images 
(IM) represents 2D PAGE image corresponding to the particular entry. Two- 
dimensional (2D) describes information like mapping procedure, isoelectric point, 
and molecular weight (Chistine et al. 2000).

5.3.3  Domain Databases

Domains are distinct functional or structural units of a protein which can inde-
pendently fold as a unit of polypeptide chain and carry specific function (Corpet 
et al. 1999). Protein domains are important to comprehend because it holds the 
contents related to evolution and protein folding (Majumdar et al. 2009). Many 
proteins consists of distinct domains. The domains in a protein are conserved 
from generation to generation, and molecular evolution uses domains as building 
blocks in different arrangements to perform several distinct functions. Domain 
database provides inclusive knowledge about protein structures as well as the 
evolutionary relationship among known structures of proteins. With the use of 
domain database, it gives insight toward structural prediction as well as protein 
folding mechanism. Major domain databases are listed in Table 5.1.

Fig. 5.3 Data explored from SWISS-2DPAGE for the protein query APOA1_Human
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5.4  Network Databases

Functional characterization of proteins can be done through the interaction models 
and their relevant position in the corresponding interaction networks. Elucidating 
the molecular interaction networks of any query protein plays a crucial role in fun-
damental biological research and also helps to discover new drug targets. Several 
computational approaches have been developed to predict the interaction between 
different proteins basing on their sequence and structural features. These computa-
tional approaches rely on the homologous sequence analysis, phylogenetic profil-
ing, Bayesian networks, and pattern comparison analysis to build molecular 
networks for any given protein. Based on these approaches, several types of net-
work databases have been developed like STRING, PIP, BioGRID, MINT (Zanzoni 
et al. 2002), and IntAct which are depicted in Fig. 5.4.

5.4.1  IntAct

In the present era, protein interaction analysis has become a major focus of pro-
teomics and biomolecular research as protein-protein interaction studies provide 
valuable information to interpret the cellular activity. IntAct offers an open-source 
database and tool kit for the storage, presentation, and analysis of protein interac-
tions. An experimental technique such as yeast two-hybrid and affinity purification 
technique allows generating a large amount of protein-protein interaction data 
(Hermjakob et  al. 2004). The IntAct database offers the extensive knowledge of 
interactive proteins. Since IntAct is an open-source database, it allows the user to 
install the database locally according to the requirement of the respective 

Table 5.1 List of domain databases

Databases Links Description

Pfam pfam.xfam.org Family and domain database
ProDom prodom.prabi.

fr
ProDom is a comprehensive set of protein domain families 
automatically generated from the UniProt Knowledge Database

SCOP scop.mrc-lmb.
cam.ac.uk/scop

SCOP is a (mostly) manually curated ordering of domains from the 
majority of proteins of known structure in a hierarchy according to 
structural and evolutionary relationships

CDD ncbi.nlm.nih.
gov/cdd

Family and domain database

CATH cathdb.info/ The CATH Protein Structure Classification database is a free, 
publicly available online resource that provides information on the 
evolutionary relationships of protein domains

DOMINE manticore.
niehs.nih.gov/
domine

DOMINE is a database of known and predicted protein domain 
(domain-domain) interactions. It contains interactions inferred 
from PDB entries and those that are predicted by 13 different 
computational approaches using Pfam domain definitions
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organization. Moreover, it lowers the expansion time and provides the consistent 
information related to interaction datasets through the use of the same framework 
and curated system.

The IntAct database has three main elements, i.e., experiment, interaction, and 
interactor. Experiments categorize interactions generally from a publication and 
group the experimental conditions in which those categorized interactions are 
reported. An interactor is a biomolecule like protein, DNA, RNA, or small molecule 
taking part in any biological interaction (Hermjakob et  al. 2004). An interaction 
may consist of one or more than one interactor to participate in interactions which 
are given in Fig. 5.5.

Generally, an annotated interaction database incorporates the data from sev-
eral resources, and the key challenge is to ensure data consistency. In the 
data attributes like experimental methods, source must be curated in a reliable 
way that data remain accurate and searchable. The IntAct database uses orga-
nized vocabularies instead of free-text attributes from existing reference systems 
like the NCBI and GO database. IntAct gives a simple search interface for inves-
tigating in the database via names, accession number, and identifiers like Swiss-
Prot and GO terms. It provides two different views, binary and experiment view, 
for displaying the data of user input. In the case of binary and experimental view, 
there are collection of particular proteins and their representation in the form of 
graphics (Aranda et  al. 2009). At present, IntAct database consists of 843,123 
interactions and 106,978 interactors, principally extracted from large-scale 
experiments and interactions imported from the literature by the IntAct and 
Swiss-Prot curation teams.

Fig. 5.4 The protein tumor necrosis factor (TNF) and its functional partners generated from 
STRING database
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5.5  Pathway Databases

Data on pathways are available from enormous number of databases developed by 
expert curators covering a large number of putative pathways, generated using natu-
ral language processing and text mining. Due to many changes in quality, size, and 
property, it is obligatory to use the correct database based on purpose of research. In 
this section, we introduce some of the major pathway database. Pathway informa-
tion is often described in the XML (eXtensible Markup Language) data format, 
which varies from database to database which is read by both humans and comput-
ers. The important pathway databases which are widely used are Kyoto Encyclopedia 
of Genes and Genomes, BioCyc, Ingenuity Pathways Knowledge Base, and 
Reactome.

5.5.1  Kyoto Encyclopedia of Genes and Genomes

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a series of databases devel-
oped by both the Bioinformatics Center of Kyoto University and the Human 
Genome Center of the University of Tokyo. KEGG contains manually curated path-
way maps which signify knowledge on molecular reaction, interaction, and relation 
networks for metabolism, organismal systems, human diseases, genetic information 
processing, environmental information processing, cellular process, and drug devel-
opment (Kanehisa et al. 2016). KEGG collects crucial data relevant to biological 

Fig. 5.5 Representation of functional partners of BRCA2 in IntAct database
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systems including phenotype and genotype data and provides necessary informa-
tion required for system biology understanding of genes, genome sequence, and 
chemical data. This information is presented as a browser-viewable pathway dia-
gram. For instance, user can search and explore whether metabolic pathways or 
enzymes exist between molecules X and Y. An overall view of the KEGG pathway 
database is shown in Fig. 5.6.

Fig. 5.6 Breast cancer pathway generated using KEGG database

D. Mishra et al.



85

5.5.2  BioCyc

BioCyc is a high-quality database which focuses on metabolic pathways originally 
formed by SRI International’s Bioinformatics Research Group. BioCyc database 
provides pathways for eukaryotic and prokaryotic species whose genomes have 
already been sequenced. The data in the BioCyc are created by software that iden-
tify the metabolic pathways of whole-sequenced species and also predict operons 
and coding genes for missing enzymes in metabolic pathways. BioCyc incorporates 
data such as GO information and protein features from other bioinformatics data-
bases like UniProt. BioCyc website offers a collection of tools for exploring and 
visualizing the database for analysis of omics data and comparative genomics. The 
data in the BioCyc databases are divided into three tiers, based on their quality. Tier 
1 databases have the most accurate data and are curated by at least one person a 
year. Tiers 2 and 3 comprise predicted metabolic pathways using computational 
methods.

5.5.3  Ingenuity Pathways Knowledge Base

Ingenuity Pathways Knowledge Base (IPKB) is the pathway database created by 
Ingenuity Systems, Inc. (www.ingenuity.com). It is a central source of functional 
annotations and biological interactions generated from mass of discretely modeled 
associations among genes, proteins, cells, metabolites, tissues, complexes, diseases, 
and drugs. The aforementioned associations or definitions are manually curated for 
accuracy and comprised of rich contextual information linked to the original article. 
Overall, the database acts as a starting point for investigation and a bridge between 
innovative discovery and known biology.

5.5.4  Reactome Pathway Databases

The Reactome pathway databases are freely available online knowledge base of 
biological pathways. They are largely focusing on human pathway information. 
These databases consist of curated information including the diverse collection 
set of data in life sciences. The annotated data include cell signaling, transport, 
pathogenic interaction with the host, cell cycle as well as biological function, etc. 
The Reactome pathway database has analysis tool for viewing the interactive 
pathway graphs, mapping, and overrepresentation onto Reactome pathway 
database.
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5.5.5  Other Pathway Databases

Pathway databases provide information related to the biochemical reactions and the 
product formed in that reaction. The pathway databases concatenate the information 
of multiple biological processes that are correlated to each other like biosynthesis, 
catabolism and tRNA charged with amino acids. A major role of pathway databases 
is to encode all the metabolic pathways related to an organism, determined either 
experimentally or computationally. The other alternative function of pathway data-
bases is to provide information for the metabolic processes to the user for a single 
or set of the related substrate. Some of the pathway databases available at present 
are given in Table 5.2.

5.6  Drug Databases

Various pharmaceutical systems holds information related to in silico drugs which 
are required for analytical support as well as research purpose. Pharmaceutical 
industries build softwares to manage drug data integration like database products, 
drug allusion results, etc. This system plays an essential role in the drug industry 
and provides the comprehensive information related to known drugs or about its 
derivatives. In this section, we discuss few drug databases widely used in both 
research and clinical settings.

5.6.1  DrugBank

DrugBank is a richly interpreted resource that associates detailed drug data with 
comprehensive drug target and drug action information. DrugBank has been 
extensively used to enable in silico drug target discovery, drug design, drug dock-
ing or screening, drug metabolism prediction, drug interaction prediction, and 
general pharmaceutical education (Wishart et  al. 2007). DrugBank provides 
extensive links to major bioinformatics and biomedical databases like GenBank, 
Swiss-Prot/UniProt, PDB, ChEBI, KEGG, PubChem, and PubMed. It provides 
different kinds of tools for data maintenance, image processing, and data extrac-
tion. DrugBank gives user-friendly web interface for searching, accessing, and 
exporting the information. The simple search to retrieve drugs for a disease is 
mentioned in Fig.  5.7. Extensive information of drug and drug target in the 
DrugBank has enabled the discovery and repurposing of some existing drugs to 
treat rare and newly identified illnesses. The newest release of DrugBank (version 
5.1.0) covers 11,177 drug records including 2560 approved small-molecule drugs, 
965 approved biotech (protein/peptide) drugs, 121 nutraceuticals, and over 5160 
experimental drugs.
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5.6.2  PharmGKB

The Pharmacogenomics Knowledge Base (PharmGKB) is a publicly available, 
online knowledge base which collects, annotates, integrates, and distributes the data 
concerning the impact of human genetic variation on drug response. PharmGKB is 
managed at Stanford University and funded by the National Institutes of Health 
(NIH), National Institute of General Medical Sciences (NIGMS), and 
Pharmacogenomics Research Network (PGRN). An example for annotation of the 
gene TP53 in the PharmGKB database is represented in Fig. 5.8.

Table 5.2 List of major pathway databases

Databases Links Description

Netpath netpath.org A curated resource of signal transduction pathways in humans
Reactome reactome.org Navigable map of human biological pathways, ranging from 

metabolic processes to hormonal signaling
WikiPathways wikipathways.

org
Metabolic pathway and protein functional databases

iPath pathways.embl.
de

Interactive Pathways Explorer (iPath) is a web-based tool for 
the visualization, analysis, and customization of various 
pathway maps

BioCarta biocarta.com BioCarta is a supplier and distributor of characterized 
reagents and assays for biopharmaceutical and academic 
research. It catalogs community produced online maps 
depicting molecular relationships from areas of active 
research, generating classical pathways as well as suggestions 
for new pathways

Cancer Cell 
Map

cancer.cellmap.
org

The Cancer Cell Map is a selected set of browsable and 
searchable human cancer-focused pathways

HumanCyc humancyc.org HumanCyc provides an encyclopedic reference on human 
metabolic pathways. It provides a zoomable human metabolic 
map diagram, and it has been used to generate a steady-state 
quantitative model of human metabolism

IntAct ebi.ac.uk/intact IntAct provides a freely available, open-source database 
system and analysis tools for molecular interaction data. All 
interactions are derived from literature curation or direct user 
submissions and are freely available

HPRD hprd.org The Human Protein Reference Database represents a 
centralized platform to visually depict and integrate 
information pertaining to domain architecture, 
posttranslational modifications, interaction networks, and 
disease association for each protein in the human proteome

MINT mint.bio.
uniroma2.it

MINT focuses on experimentally verified protein-protein 
interactions mined from the scientific literature by expert 
curators

BRENDA brenda-
enzymes.org

BRENDA (the Comprehensive Enzyme Information System) 
is an information system representing one of the most 
comprehensive enzyme repositories

TRANSPATH genexplain.
com/transpath

TRANSPATH is a database of mammalian signal transduction 
and metabolic pathways
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The important objective of PharmGKB is to support the scientists in understand-
ing how genetic variation affects a person and how a person’s body responds to a 
drug. Technically, this field of study is termed as pharmacogenomics or 
 pharmacogenetics (PGx). To implement this objective, PharmGKB manually anno-
tates and verifies pharmacogenomics data from the primary literature and then 

Fig. 5.7 Exploring drug details for the term “rheumatoid arthritis” in DrugBank database

Fig. 5.8 Clinical annotation of the gene TP53 in PharmGKB database
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stores it in the knowledge base. Identifying consistent genetic variant-drug response 
interactions with strong supporting evidence can be considered for potential clinical 
implementation in the future. PharmGKB is collaborated with several international 
consortia such as Warfarin Pharmacogenetics Consortium (IWPC) and the 
International Clopidogrel Pharmacogenomics Consortium (ICPC) to support analy-
sis of large pharmacogenomics datasets.

5.6.3  ChEBI

Chemical Entities of Biological Interest (ChEBI) is a database and ontology of 
molecular entities focused on “small” chemical compounds. The database provides 
more significant information about molecular entities like distinct isotopic atoms, 
molecules, ions, and complex atomic information. These molecular entities are 
either the natural or synthetic products that are involved in the biological processes 
(Whitfield et al. 2006). ChEBI contains the small molecules’ ontology related to 
each other which helps the users to design the new data depicted in Fig. 5.3. These 
chemical ontologies also explain the biological role which the small molecules are 
active in. It also provides the information related to pathways, biochemical reac-
tions, gene expression, as well as protein’s structure and function. Java version 6 is 
required to access the entries in the ChEBI. It consists a number of distinct chemical 
entities, each of which may manually be curated via expert analyst in the number of 
knowledge fields. A common ChEBI archive consists of a number of knowledge 
fields, i.e., characterization of knowledge field given as ChEBI names, descriptions, 
and ID number.

The submission of compounds in ChEBI database are based on the star system 
as follows: (Apweiler et  al. 2004) three-stars system into which the archive has 
manually curated or processed via ChEBI organization, (Aranda et al. 2009) two- 
stars system in which the chemical archive data are manually processed via ChEBI 
depositors, and (Ashburner et al. 2000) one-star system, where the chemical archive 
data are automatically curated from a data source. On the other hand, an absence of 
stars indicates that the chemical archive is wiped out or outdated. ChEBI also rep-
resents the information related to chemical structures along with MDL molecular 
files, interpreted chemical input, formulas, and information related to mass and 
charge or chemical nomenclature of particular chemical archives. This database is 
designed as the relational database which makes considerable benefits in ontology 
interpretations. The ChEBI database is widely used in the field of science and arti-
ficial intelligence (Degtyarenko et al. 2007).

When compared with established commercial chemistry resources, ChEBI is a 
small database (De Matos et al. 2010). However, the asset of ChEBI lies in its qual-
ity. ChEBI offers and promotes “gold standard” annotation for molecular entities 
which contains standard vocabularies, representation of structures as graphs, and 
well-defined associations between the entities (Fig. 5.9).
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5.6.4  PubChem

The PubChem database contains the chemical information at the molecular level, 
including functionality against the biological aspects. The PubChem database 
includes the chemical information at the broad range, i.e., name, molecular weight, 
formula, XlogP, donor as well as acceptor bonding properties, etc. This database has 
93.9 million entries of the pure chemical compound as well as 236 million entries 
of mixed substance or uncharacterized compounds.

5.6.5  ZINC Database

The ZINC database contains the collection of publically available chemical com-
pounds mainly maintained for virtual screening. The goal of ZINC database is to 
provide the three-dimensional chemical compound to biologically relevant aspects. 
We can freely download the chemical compound at various file format, i.e., 3D SDF, 
Dock flexible, as well as SMILES format.

Fig. 5.9 Information extracted from ChEBI ontology for small-molecule capecitabine
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5.7  Specialized Database

5.7.1  Model Organism Databases

Model organism databases (MODs) are biological knowledge base, developed to 
provide deep in-depth biological data for intensively studied model organisms. 
MODs support scientists to easily explore contextual information on big sets of 
genes, plan and conduct experiments more efficiently, integrate their data with pre-
vailing knowledge, and construct novel hypotheses. MODs allow users to analyze 
results and interpret datasets, and the data they produce are increasingly used to 
describe less well-studied species. The data derived from MODs are used for the 
clarifications and understanding of Homo sapiens-related data. The well-known 
model organisms are Saccharomyces cerevisiae, E. coli, Drosophila, and Mus mus-
culus. Each organism consists of the genes that encode for proteins which are simi-
lar to Homo sapiens. In model organisms, the genetic use is the most productive 
way to understand the human homologs which are affected by the mutation (Engel 
2009). The major model organism databases are given in Table 5.3.

5.7.2  IntEnz

The integrated relational enzyme database (IntEnz) is a publicly available database 
focused on enzyme nomenclature. IntEnz is supported by the Nomenclature 
Committee of the International Union of Biochemistry and Molecular Biology 
(NC-IUBMB) and contains enzyme records that are annotated and accepted by the 
Nomenclature Committee (Whitfield et  al. 2006). The IntEnz database contains 
archive for every enzyme records along with their EC (enzyme classification) num-
ber, suggested name, and disease data information (Fleischmann et al. 2004).

5.7.3  EPD

The Eukaryotic Promoter Database (EPD) is created in Weizmann Institute of 
Science, Israel, based on EMBL information center. The EPD database is a curated 
collection of eukaryotic POL II promoters, for which the transcription start site has 
been determined experimentally (Périer et al. 1998). It is developed for comparative 
sequence analysis and plays a crucial role in determining the eukaryotic transcrip-
tion regulatory element (Whitfield et  al. 2006). EPD is designed in a way that 
enables dynamic mining of biologically meaningful promoter subsets for compara-
tive sequence analysis. An example for using EPD is represented in Fig. 5.10.
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Table 5.3 List of model organism databases

Databases Links Description

Saccharomyces 
Genome 
Database

yeastgenome.
org

The Saccharomyces Genome Database provides 
comprehensive integrated biological information for the 
budding yeast S. cerevisiae along with search and analysis 
tools to explore these data, enabling the discovery of 
functional relationships between sequence and gene 
products in fungi and higher organisms

PomBase pombase.org PomBase is a model organism database that provides 
online access to the fission yeast Schizosaccharomyces 
pombe genome sequence and its features, together with a 
wide range of associated biological data and references to 
supporting literature

Xenbase xenbase.org Xenbase is MOD, providing informatics resources, as well 
as genomic and biological data on Xenopus frogs

ZFIN zfin.org The Zebrafish Information Network is an online biological 
database of information about the zebrafish (Danio rerio)

TAIR arabidopsis.org The Arabidopsis Information Resource (TAIR) maintains 
a database of genetic and molecular biology data for the 
model higher plant Arabidopsis thaliana

Candida Genome 
Database

candidagenome.
org

The Candida Genome Database is a resource for genomic 
sequence data, gene and protein information for Candida 
albicans and related species

dictyBase 
database

dictybase.org dictyBase is the model organism database for the social 
amoeba Dictyostelium discoideum

Rat Genome 
Database

rgd.mcw.edu RGD is responsible for attaching biological information to 
the rat genome via structured vocabulary, or ontology, 
annotations assigned to genes and quantitative trait loci 
(QTL) and for consolidating rat strain data and making it 
available to the research community

Mouse Genome 
Database

informatics.jax.
org

MGD provides access to data on the genetics, genomics, 
and biology of the laboratory mouse to facilitate the study 
of human health and disease

WormBase wormbase.org WormBase is an online biological database about the 
biology and genome of the nematode model organism 
Caenorhabditis elegans and contains information about 
other related nematodes

EcoCyc ecocyc.org The EcoCyc project performs literature-based curation of 
the E. coli genome and of E. coli transcriptional 
regulation, transporters, and metabolic pathways

FlyBase flybase.org FlyBase is an online bioinformatics database and the 
primary repository of genetic and molecular data for the 
insect family Drosophilidae
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5.7.4  TRANSFAC

Transcription factor (TRANSFAC) database is a manually annotated database of 
eukaryotic transcription factors, their genomic binding sites, and DNA binding pro-
files. The contents of the database are used as gold standard to predict potential 
transcription factor binding sites (Wingender et al. 2000). TRANSFAC database can 
be used to map the individual as well as entire genomic regulatory site and provides 
extensive knowledge of their transcriptional control.

5.8  Scientific Literature Database

5.8.1  PubMed

The PubMed literature database is an open-source database which searches for bio-
medical and life sciences literature. It provides the access point to search the PMC, 
NCBI Bookshelf, as well as full text of collected books. The retrieval of information 
on PubMed is carried via entering the key terms of the object into the PubMed 
search icon (Fig. 5.11).

Fig. 5.10 Exploring promotors of the query VEGFA_1 in EPD

5 Other Biological Databases



94

5.8.2  SCI (Science Citation Index)

The Science Citation Index is semantically developed by the Scientific Information 
Institute. This online web is available through the science web. The database of 
Science Citation Index provides the platform to the researcher to recognize the cita-
tion of the article as well as author’s cited information.

5.8.3  Google Scholar

The Google Scholar is an open web-based search engine, which maintained to index 
the whole literature information across a multitude publishing format. This search 
engine permits users to extract the creditable scholarly material. The Google Scholar 
is interdisciplinary and easy to use open source.

5.9  Conclusion

The up-to-date biological relevant data is vital for life sciences research. In this 
chapter we focused on the protein identification and other biological databases 
including genome as well as proteome annotation databases and integrated 

Fig. 5.11 Web illustration of PubMed
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biological information databases including network or pathway databases. 
Additionally, we have also briefed about drug and scientific literature databases in 
this chapter.
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6.1  Introduction to Biological Sequences

A biological sequence is a single, linear, molecule of nucleic acid or protein referred 
to as the primary structure of the biological macromolecule. Sequence analysis of 
this primary structure is a key way of understanding the biology of an organism. 
Sequence analysis helps to identify the homologous sequences, intrinsic features, 
sequence variation/differences, the molecular structure of sequence, evolution, and 
genetic diversity of sequence and organisms. The deoxyribonucleic acid (DNA) is 
so often called the blueprint of life that contains all the instruction necessary for 
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building an organism. The DNA sequences are transcribed to the mRNA chain 
which gives the information needed to the ribosome which builds proteins; the poly-
peptide sequence of amino acids and every part of the body is handled through this 
system of protein construction (Fig. 6.1).

DNA, the genetic material found in the cells of most living organisms, was first 
discovered and isolated in 1869 by Friedrich Miescher. It is a polymer of repeating 
units of nucleotides which are made up of a nitrogenous base, a pentose sugar, and 
a phosphate group. It is termed as deoxy because of the presence of hydrogen in 
place of a hydroxyl group (OH) at the second carbon of the deoxyribose (pentose) 
sugar. DNA has two strands twisted into a double helix. The two strands are made 
up of simpler molecules called nucleotides. Each nucleotide is made up either of the 
four nitrogen-containing nucleobases like adenine (A), guanine (G), cytosine (C), 
and thymine (T) along with deoxyribose and a phosphate group. These nucleotide 
molecules are interlinked in a chain-like structure by forming covalent bonds 
between the sugar of one nucleotide and the phosphate of the next, resulting in an 
alternating sugar phosphate backbone (Fig. 6.2). This pairing contributes in the syn-
thesis of DNA molecules during cell division. There are about 3 billion base pairs 
which encode different structural and functional proteins in a human being.

DNA sequencing is the experimental method to determine the sequential arrange-
ment of nucleic acid bases (A, T, G, and C) in a polynucleotide which encodes dif-
ferent proteins that are functional in a living cell. The complete set of coding and 
noncoding sequences in human DNA is referred to as genome. The genome carries 
the information for all the proteins required for the normal life of an organism. 
Biological sequences show complex patterns of similarity to each other. This can be 
identified by searching for similarity among the sequences. For this, we need to 
know the entire genomic sequence of an organism.

The invention of sequencing technologies along with the bioinformatics tools 
has contributed a great role in analyzing the genome of an organism. The output file 
of a sequencer gives us the order of four nucleotides. Maxam, Gilbert, and Sanger’s 
discovery was a landmark discovery which opened the door to develop faster and 
efficient sequencing technology. Sanger sequencing technology is the most applied 
technique of sequencing and has been commercialized and automated as the “Sanger 
sequencing technology,” the first-generation sequencing technology.

Fig. 6.1 The Central 
dogma of molecular 
biology
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Starting from the first-generation sequencing by which the first human genome 
sequencing was mapped, there have been tremendous growth and innovation in the 
DNA sequencing technology. The last decade was the new era of sequencing tech-
nologies due to the revolutionary changes in new high-throughput sequencing tech-
nologies. The DNA sequencing became one of the important research applications 
in the scientific world in all the fields and revolutionizing many fields of science and 
is increasingly used in health care to address the diseases as well as the biology of 
the cell, tissue, and organs.

6.2  DNA Sequencing

The sequencing is an analytical procedure of decoding the DNA sequence to deter-
mine the order of the base pairs of the nucleotides present in a stretch of DNA. The 
central dogma of molecular biology states that DNA can undergo self-replication to 
form another DNA as well as undergo transcription to form RNA. The order of the 
nucleotides is essential for the formation of the RNA and its further translation to 
the coded protein leading to the translation of the genetic information into the struc-
tural proteins.

Sanger sequencing developed by Frederick Sanger enabled the sequencing of 
bacteriophage phi X 174 which contains approximately 5375 nucleotides. This 
became the first fully sequenced genome in the year 1977. In 2003, the Human 

Base pairs
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U.S. National Library of Medicine
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Fig. 6.2 Schematic DNA 
double helix structure and 
its base complements
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Genome Project (HGP), an international consortium effort, successfully sequenced 
and mapped the entire human genome, which came to an end after 13  years of 
research around many laboratories in the world.

A new era of sequencing method commonly described as next-generation 
sequencing (NGS) technologies with very high throughput and at much lower cost 
than the first sequencing technologies was launched by Roche’s 454 technologies in 
2005. The key feature NGS is a parallel sequencing process producing several thou-
sands of sequences simultaneously. These high-throughput sequencers reduced the 
cost of DNA sequencing. This is achieved by miniaturization of sequencing 
reactions.

6.2.1  Applications of DNA Sequencing

Since the discovery of first-generation DNA sequencing technology, DNA sequenc-
ing has revolutionized numerous fields including biotechnology, forensics, molecu-
lar biology, and microbiology. DNA sequencing has helped in the completion of 
numerous genomes including the human genome. This has enabled researchers to 
trace the human evolution and at the same time establish evolutionary relationships 
between species. Apart from this, DNA sequencing has also helped in the identifica-
tion of genetic variations and is one of the foremost tools used in the study of mutant 
genes and heritable diseases.

One of the major DNA sequencing applications is in the field of forensic science. 
DNA sequencing can be used to determine VNTR (variable number tandem repeat) 
sequences for crime scene profiling or paternity tests. In the recent past, metage-
nomics has utilized DNA sequencing to explore the ecology of microbes. It has 
been used in the diagnosis of infectious disease and examination of normal gut flora. 
DNA sequencing is also being used increasingly in agriculture and animal hus-
bandry, to maximize quantity and quality of yield and determine and establish qual-
ity breeding stocks, respectively.

6.3  First-Generation Sequencing

The late 1970–1980s were significant years for genetics and genomics. Invention of 
polymerase chain reaction (PCR), a process through which amplification of DNA 
and the development of the first DNA sequencing technologies were made possible, 
sequencing the entire genome. Sanger sequencing and Maxam-Gilbert sequencing, 
considered as first-generation sequencing methods, dominated genomics for nearly 
40 years. They advanced genomic research by folds and paved a path for subsequent 
sequencing technologies.
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6.3.1  Maxam-Gilbert Sequencing

6.3.1.1  History

Maxam-Gilbert sequencing is one of the earliest DNA sequencing platforms. This 
sequencing method is popularly known as chemical cleavage method. It was devel-
oped in 1977 by Allan Maxam, a Ph.D. student in Harvard University, with Walter 
Gilbert based on nucleobase-specific partial chemical modifications to the DNA, as 
well as cleavages of the backbone of the DNA near the modified nucleotides. The 
method became popular due to the advantage of being able to use purified DNA 
directly, but it soon faded out of preference because of its technical complexity.

6.3.1.2  Principle

The principle of the Maxam-Gilbert sequencing is based on the displacement of 
bases as a result of purine (A and G) reactions with dimethyl sulfate and pyrimidine 
(C and T) reactions with hydrazine. The displacement occurs because of the cleav-
age of glycosidic linkage between the nitrogenous base and the deoxyribose sugar. 
In sites of base displacement, piperidine catalyzes the cleavage of the phosphodies-
ter bond. The main aim of the method is to create a single-stranded DNA substrate 
with a radioactive label on the 5’end, through a series of selective reactions.

6.3.1.3  Procedure

The two polynucleotide strands in DNA are separated into single strand followed by 
5′ end radiolabeling with gamma-32P and then cleaved chemically. It is a two-step 
biocatalytic procedure involving piperidine and two chemicals, namely, dimethyl 
sulfate and hydrazine, at specific conditions that selectively attack purines and 
pyrimidines.

Dimethyl sulfate attacks purines, hydrazine attacks pyrimidines, and piperidine 
catalyzes the cleavage of phosphodiester bond at the site of base displacement. 
Although both dimethyl sulfate and piperidine specifically cleave the guanine 
nucleotides, dimethyl sulfate and piperidine in formic acid will cleave both guanine 
and adenine (G, A + G). Hydrazine and piperidine will cleave both thymine and 
cytosine nucleotides, whereas hydrazine and piperidine in 1.5 M NaCl will only 
cleave cytosine nucleotides (C + T, C). This generates series of labeled DNA frag-
ments with specific nucleotides at the 3′ end.

The reaction products are divided by polyacrylamide gel electrophoresis (PAGE) 
which is based on size. Smallest fragment goes fastest. The labeled fragments in the 
gel are visualized by autoradiography. The nucleotide sequence is coded from bot-
tom to top of the gel (Fig. 6.3) (Maxam and Gilbert 1977; Gaastra 1985).
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6.3.1.4  Advantages and Disadvantages

The major attraction of the Maxam-Gilbert sequencing procedure is that the DNA 
template used in the method can be either single-stranded or double-stranded. The 
Maxam-Gilbert method was preferred over Sanger at a point in time because Sanger 
method required cloning of the single-stranded DNA for each read start. The 
Maxam-Gilbert method can also be used for analyzing DNA protein interactions 
and epigenetic modifications to the DNA.

Fig. 6.3 An example of Maxam-Gilbert Sequencing Technique, showing specific cleavage of 
DNA backbone yielding different sized labelled DNA fragments. Source: Binf snipacdemy
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The main limitation in Maxam-Gilbert sequencing came in the form of usage of 
harmful chemicals and techniques such as X-rays and radiolabeling. The difficulty 
in scaling up and handling these techniques, and the requirement of using hydra-
zine, a known neurotoxin, made the method disadvantageous.

6.3.2  Sanger Sequencing Method

6.3.2.1  History

Sanger sequencing is one of the first methods of DNA sequencing to be discovered. 
Frederick Sanger along with his colleagues began his research on developing a 
sequencing technology with sequencing insulin and then RNA, and subsequently 
DNA. His research paved the way to the Sanger sequencing or chain termination 
method introduced in the year 1977. It went on to earn Sanger his second Nobel 
Prize in Chemistry, in 1980, making him one of only two Nobel Laureates to win 
twice in the same category. The technology was commercialized by Applied 
Biosystems. It was the method employed to sequence the entire human DNA, in the 
Human Genome Project, by using hundreds of Sanger sequencing machines across 
many laboratories in the world.

6.3.2.2  Principle

Chain termination method is also known as dideoxy sequencing method because it 
involves the use of an analog of normal nucleotide 2′, 3′-dideoxynucleoside triphos-
phates (ddNTPs). These are chain-terminating nucleotides lacking 3’-OH ends. 
This method uses single-stranded DNA. This method is based upon the incorpora-
tion of ddNTPs into an extending DNA strand to stop chain elongation.

6.3.2.3  Procedure

The chemical reaction is carried out in four separate reaction tubes, with each reac-
tion containing template DNA, primers, DNA polymerase, and four dNTPs with 
one radiolabeled (Sanger used radio-labeled ddATPs for detection of bands), and 
additionally, each reaction tube is added with only one of the four ddNTP (ddATP, 
ddCTP, ddGTP, or ddTTP) in specific concentration. Followed by denaturation and 
annealing of the primer, the enzyme DNA polymerase starts adding dNTPs to the 
newly synthesized DNA strand, and if the ddNTP gets incorporated, the reaction 
terminates. This leads to the separate collection of DNA strands of different sizes in 
all four different reaction tubes. Individual reaction is then placed into a separate 
wells of polyacrylamide gel containing urea. Urea helps in the prevention of DNA 
renaturation during the process if electrophoresis and then the positions of the DNA 
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bands are detected by autoradiography. The radioactive spot indicates the DNA 
fragments with the ddNTP incorporated at the specific position. The nucleotide 
sequence in the separating gel is determined from the bottom upward, and the 
nucleotide sequence of bands in different terminator lanes gives the template nucle-
otide sequence (Slatko et al. 2001; Men et al. 2008; Sanger et al. 1977; França et al. 
2002).

Once the four reactions are complete, gel electrophoresis is performed with 
SDS-PAGE. All individual reaction mixtures are loaded into a lane to produce four 
total lanes. The electrophoresis results are transferred onto a polymer sheet and 
exposed to x-ray autoradiography. This tells us exactly the position of the radioac-
tively labeled fragments. The smaller the fragment is, the farther away it travels. 
Therefore, the farthest fragment would be the 5’end DNA base. Depending on the 
size of the fragment, the DNA sequence of the complementary strand can be formed, 
and this can then be used to sequence the original DNA strand (Fig. 6.4).

6.3.2.4  Advantages and Disadvantages

Sanger sequencing helped researchers to identify mutations and the underlying cause 
of genetic diseases. It is the best method for identification of short tandem repeats 
and sequencing single genes. The biggest disadvantage of this method, however, is 
the amount of time it consumes, which comes with a low throughput. The technique 
can only process short sequences of DNA (up to 300–1000 base pairs) at a time.

Fig. 6.4 Schematic 
diagram of PAGE gel 
reading DNA sequence 
used in Sanger Sequencing
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6.3.3  Automated DNA Sequencing

6.3.3.1  History

Both methods – Sanger and Maxam Gilbert – were time-consuming and challenging. 
In 1986, Leroy Hood and colleagues improved the Sanger sequencing method by 
using fluorescent labels instead of radiolabels. One of the four fluorescent dyes is 
used to label the nucleotide primers. Each dye is placed in an individual sequencing 
reaction with one of the four ddNTPs. Upon the completion of sequencing reactions, 
all the four reactions are mixed and analyzed together in one lane of a polyacrylamide 
gel. Later, James M. Prober and colleagues labeled the ddNTPs instead of fluores-
cence-labeled primers. The use of four different fluorescence- labeled ddNTPs with 
four different wavelengths permits the sequencing reaction in a single tube instead of 
four separate reactions. This method was further improved in the early 1990s when 
Harold Swerdlow and colleagues employed the capillaries in DNA sequencing 
method. These capillaries are small (with 50 μm inner diameter) and operate with 
much higher voltages to lower the run times. In 1993, B. L. Karger replaced the poly-
acrylamide with the low-viscosity separation matrix; later in 1995, Zhang developed 
a non-cross-linked polymer that is stable even at 60 °C for the high-quality sequence.

6.3.3.2  Principle

This is similar to Sanger sequencing, but the reaction is automated, and the reac-
tions are carried out in a single tube having all four dideoxynucleotide triphosphates 
each coated with four different fluorescent dyes, each of it emits light at a particular 
wavelength. The sequence data generated are acquisition and analyzed by the use of 
a computer (Fig. 6.5).

6.3.3.3  Procedure

In the automated DNA sequencers, sequence reaction is carried out as a single reac-
tion as mentioned in Fig. 6.6. The sequence reaction loaded into the capillary after 
the dye terminator reaction. The fragments are separated as the constant electrical 
current applied through the capillary. The fluorescently labeled ddNTPs excite when 
it passes through the laser. The fluorescent wavelengths are collected by the detector, 
and the sequence data will be generated using software (Wallis and Morrell 2011).

6.3.3.4  Advantages and Disadvantages

Automated DNA sequencers are expensive, and also it is challenging to sequence 
repetitive sequence regions. In spite of new discoveries of next-generation sequenc-
ers, automated Sanger sequencing is still considered as gold standard due to its 
accuracy and read length, but it is slow and expensive.
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Fig. 6.5 Automated Capillary DNA Sequencing. (a). Capillary electrophoresis system; (b). Laser 
detection of the fluorescent labels. (c). Electropherogram of the DNA sequence. https://www.pre-
postseo.com/tmp_imgs/2932437431526901864.jpg

Fig. 6.6 Automated DNA Sequencing workflow

6 Introduction to Nucleic Acid Sequencing

https://www.prepostseo.com/tmp_imgs/2932437431526901864.jpg
https://www.prepostseo.com/tmp_imgs/2932437431526901864.jpg


108

6.3.4  Pyrosequencing

Pyrosequencing is based on the generation of a light signal by pyrophosphate upon 
the addition of nucleotide synthesizing complementary strand. This method was 
developed in the year 1996, and it revolutionized the second-generation sequencers.

6.3.4.1  Procedure

The template DNA is immobilized in the reaction. The nucleotides A, T, G, and C 
are added and removed sequentially one after the other. The reaction is catalyzed by 
the use of DNA polymerase, ATP sulfurylase, luciferase, different enzymes, lucif-
erin, and substrates like adenosine 5′ phosphosulfate (APS) and apyrase. Once the 
primer annealed to the template DNA, DNA polymerase will add one of the comple-
mentary nucleotides onto the template strand, and this will release pyrophosphate 
(PPi). ATP sulfurylase present in the reaction will convert PPi to ATP in the pres-
ence of APS. The ATP produced substrates the luciferase and converts luciferin to 
oxyluciferin which generates light that could be captured by the camera. The reac-
tions start with another nucleotide once the unutilized nucleotides and ATP are 
degraded by apyrase. Each nucleotide is added in turn so that only one of the four 
will generate a light signal and eventually captured and recorded (Fig.  6.7) 
(Harrington et al. 2013; Ravi et al. 2014).

6.4  Second-Generation Sequencing

Sanger sequencing is used exclusively for nearly 30 years after their discovery. The 
cost and time consumption in the two methods however soon became a concern. 
The next wave of sequencing technology known as second-generation sequencing 

Fig. 6.7 Schematic picture represents the working principle of Pyro Sequencing. (https://com-
mons.wikimedia.org/wiki/File:How_Pyrosequencing_Works.svg)
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emerged in the mid-2000s and aimed at decreasing cost, increasing speed, and 
 eliminating the need for electrophoresis.

6.4.1  Roche 454 Sequencing

6.4.1.1  History

Pyrosequencing began in 1987 as a method utilized for the uninterrupted monitor-
ing of DNA polymerase activity by Nyren and Lundin. In 1988, Edward Hyman 
continued on the work of Nyren and Lundin to invent a DNA sequencing method. 
In 1996, the pyrosequencing platform was developed by Ronaghi et al. After almost 
10 years, in 2005, Rothberg and his colleagues introduced the first next-generation 
sequencer to be commercially available based on the pyrosequencing approach 
done in 1996. Later on, 454 Life Sciences developed a parallelized version of pyro-
sequencing which since then has been acquired by Roche Diagnostics.

6.4.1.2  Principle

The initial pyrosequencing principle was first described in 1993 by Pål Nyren, 
Mathias Uhlen, and Bertil Pettersson. During nucleotide incorporation, pyrophos-
phate is released by the secondary reactions which result in releasing of light. The 
light is detected, and the light intensity determines the number of the nucleotides 
added, hence representing the complementary nucleotides on the template strand.

6.4.1.3  Procedure

Hybridization of the sequencing primer to ssDNA template followed by incubation 
with ATP sulfurylase, DNA polymerase, apyrase, and luciferase, in addition to 
luciferin and the substrates like adenosine 5′ phosphosulfate (APS), is required for 
the first step in the solution-based version of pyrosequencing.

Initiation of the second step requires the addition of deoxynucleotide triphos-
phates (dNTPs), which is incorporated into the template by the action of DNA poly-
merase. This incorporation releases pyrophosphate (PPi).

In the presence of adenosine 5’phosphosulfate, ATP sulfate converts pyrophos-
phate to ATP which will act as a substrate for luciferase-mediated conversion of 
luciferin to oxyluciferin which produces visible light. The amount of light produced 
is directly proportional to the amount of ATP. A special camera is used to detect the 
light produced in the luciferase-catalyzed reaction. Apyrase degrades the left-out 
nucleotides, and ATP restarting the reaction can take place with another nucleotide 
(Fig. 6.8) (Voelkerding et al. 2009).
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6.4.1.4  Advantages and Disadvantages

The main advantage of pyrosequencing is that it is timesaving and can be done in 
real time. It is cost-effective when compared to dideoxynucleotide chain termina-
tion sequencing methods and facilitates haplotype phasing and the identification of 
structural genetic variation by pairing reads which will span tens of kilobases of the 
genomic template sequence. The main disadvantage, however, is the occurrence of 
frameshift errors which are systematic errors in reading (Dewey et al. 2012).

Fig. 6.8 Roche 454 massive parallel pyrosequencing
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6.4.2  Sequencing by Synthesis: Illumina/Solexa Platform

6.4.2.1  History

The Illumina/Solexa platform is the brainchild of Shankar Balasubramanian and 
David Klenerman, scientists at Cambridge University, a university that contributed 
to the first draft of the Human Genome Project. Inspired by the university associa-
tion with DNA research, both of them used their project on fluorescent-labeled dyes 
and motion of polymerase to theorize a new sequencing approach known as sequenc-
ing by synthesis technology. Later, they formed Solexa Inc. in June 1998 and with 
investment from Abingworth LLP, established facilities at Chesterford Research 
Park in 2000. In 2004, Solexa obtained molecular clustering technology from 
Manteia. In 2006, Solexa launched its first sequencer, the Genome Analyzer, which 
revolutionized DNA sequencing by enabling sequencing of 1 gigabase of data in a 
single run. Solexa was acquired by Illumina in 2007, and since then, the  Illumina/
Solexa platform has remained one of the foremost and widely adopted sequencing 
technologies in the world.

6.4.2.2  Principle

The Illumina/Solexa platform of sequencing by synthesis (SBS) is based on revers-
ible termination sequencing method. While the principle of SBS technology is very 
similar to capillary electrophoresis sequencing, the main difference comes in the 
fact that while Sanger sequencing uses dideoxynucleotides (ddNTPs) to terminate 
primer extension irreversibly, SBS uses modified nucleotides (i.e., fluorescently 
labeled deoxyribonucleotide triphosphates) to reversibly terminate primer exten-
sion. This has enabled sequencing across millions of DNA fragments in a massively 
parallel way, instead of single DNA fragment sequencing.

6.4.2.3  Procedure

Illumina sequencing by synthesis has four main steps: sample preparation, cluster 
generation, sequencing, and data analysis.

Library Preparation The template DNA is randomly fragmented (200–600 base 
pairs) by an enzyme transposases. This is followed by ligation of adapters (P5/P7) 
to 5′ and 3′ ends. Alternatively, six-base-pair indices are added which creates the 
unique barcode for the sample enabling sequencing different samples at the same 
time. The adapter-ligated fragments are amplified by PCR reaction and subse-
quently gets purified.
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Cluster Generation The sample is loaded on a flow cell with a lawn of two 
types of oligosides which are complementary to P5/P7 adapter sequence of the 
DNA fragments. Each hybridized DNA fragments is attached to the complemen-
tary oligo, and DNA polymerase enzyme creates a complementary strand. The 
double-stranded DNA is denatured, and the original template is washed away, 
while the new fragment which is covalently attached to the flow cell remains. 
The ssDNA forms a bridge by hybridizing with the adjacent complementary 
primer and is extended by the polymerase which results in the formation of a 
dsDNA bridge. The dsDNA bridge is denatured, and the end result is two ssDNA 
strands covalently attached to the flow cell. The bridge amplification cycle is 
repeated numerous times. Likewise, each fragment is amplified into distinct, 
clonal clusters through bridge amplification, leaving a cluster of uniform DNA 
sequence (Fig.  6.9)  (Voelkerding et  al. 2009). Now the template is ready for 
sequencing.

Sequencing After clonal amplification, the reverse ssDNA is cleaved and washed 
away, leaving only the forward ssDNA attached to the flow cell. The primer anneals 
to the forward strand and will start adding fluorescently labeled ddNTPs. Only one 
base pair added at a time with reversible terminator which is to prevent multiple 
additions in a single time. When a base is incorporated and the fluorophore is excited 
with a laser and the emission captured. The fluorophore is cleaved off and the termi-
nator removed. The cycle is repeated until the forward strand is completely 
sequenced, which gives single-end sequencing. For the paired-end sequencing, the 
sequenced product is washed away. The 3′ ends of the forward strand which were 
previously blocked are unprotected followed by cluster generation. The primer is 
introduced to the flow cell and hybridizes to the reverse strand, and a read is gener-
ated similar to the forward strand (Ansorge 2009; Guzvic 2013; Buermans and 
Dunnen 2014; Heather and Chain 2016).

Sequences from the pooled samples are first separated on the basis of the unique 
indices which were introduced during the sample preparation. Sample reads with 
similar base calls are clustered, and the forward and reverse reads are paired. The 
contiguous sequences generated are aligned back to a reference genome. Following 
alignment variations like single-nucleotide polymorphism, insertion or deletion 
could be analyzed.

6.4.2.4  Advantages and Disadvantages

The first and foremost advantage of SBS technology is that with standard reagents, 
it allows up to 96 samples to be sequenced per run. At the same time, SBS technol-
ogy is better at sequencing homopolymeric sequences in comparison with 454 or 
ion torrent as it allows incorporation of one nucleotide per reaction.

One of the main limitations of SBS technology remains the limitation of reading 
length, especially when it comes to de novo sequencing. Substitution errors due to 
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increasing background noise in each cycle, GC bias in bridge amplification, and 
decreased efficiency of sequencing due to scars caused by unblocking of nucleo-
tides were once major limitations of SBS technology but have hence been reduced 
as a result of advancement in the field of chemistry (Ari and Arikan 2016).

Fig. 6.9 Schematic diagram of Illumina sequencing technology
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6.4.3  Sequencing by Ligation: ABI/Solid

6.4.3.1  History

ABI Sequencing by Oligonucleotide Ligation and Detection (SOLiD) sequencing is 
an advanced sequencing method, based on the principle of ligation using DNA 
ligase instead of DNA polymerase. As of 2008, SOLiD System was said to be the 
only NGS technology with a 99.94% accuracy. The read length of ABI/SOLiD 
sequencing is 25 to 35; an approximate number of 40 million beads can be 
sequenced, and the corresponding output sequence data is 2 to 4 gigabases. It was 
devised by Applied Biosystems, now known as Life Technologies, Carlsbad, 
California, United States. It was opened to the market in 2007, but they were discon-
tinued in May 2016 (Huang et al. 2012).

6.4.3.2  Principle

It operates on the principle of constructing the genomic library construction and 
ligation followed by sequencing reaction. This sequencing technology applies DNA 
ligase instead of DNA polymerase for sequencing. The genome undergoes random 
fragmentation and then it attaches to the adapter molecule followed by magnetic 
bead addition for clonal amplification in such a way that only one DNA fragment 
will be available on the magnetic bead’s surface.

The emulsion PCR is used in amplifying the bead-captured DNA molecules. 
This amplified bead-captured DNA is anchored to a glass and flooded with 
fluorescent- labeled oligonucleotides. If the oligonucleotide is complementary to the 
template, it will be ligated, and then two bases will be detected at one time. The 
oligonucleotide is then cleaved (Fig. 6.10) ( Voelkerding et al. 2009).

6.4.3.3  Procedure

A DNA library is prepared from the sample, and it is utilized in preparing a clonal 
bead population. Only one DNA fragment is held up on the surface of individual 
magnetic bead. The P1 adapter is ligated to the starting sequence of every frag-
ment. In a micro reactor containing the entire essential reagent for PCR, an emul-
sion PCR takes place. The products attached to bead that result from the PCR are 
then bonded to a glass slide. The primers hybridize the P1 adapter sequence within 
the library template. A set of four fluorescently labeled di-base probes compete for 
ligation to the sequencing primer. Interrogating every first and second base in each 
ligation reaction will specify the di-base probe. Multiple cycles of ligation, detec-
tion, and cleavage are performed with the number of cycles determining the even-
tual read length. After multiple rounds of ligation cycles, the extended product is 
removed, and this template is again set with primers corresponding to n-1 position 
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for the second round of ligation cycle. About five rounds of primer reset experi-
ments are executed for sequence tag. During this primer reset process, each nucleo-
tide base is examined in two different independent ligation reactions by two 
different primer sets.

Color-Space Coding

Interrogation Probes

Cleavage Site

Primer n

Second interrogation of base

Primer n

Primer n-1

Primer n

Primer n

P1 Adapter
A

B

C

D

E

P1 Adapter
Template

Template

Template

Template

P1 Adapter

P1 Adapter

P1 Adapter

Template
cleavage

p 5�

3�

3�

3�

3�

3�

3�

3� 5�

5�

5�

3�

3�

5�3�

3�

3�T A

T A

T A

A T

A Tn

n n n z z z

n n

n n n z z z

A T n n n z z z

z z z

A T T T

T T

T T

T T

n n n z z zG T

n n n z z zC T

n n n z z zA T

n n n n n n z z zA A G T

C T T T

A A

A A

G A

G T

C A

C A

C A

G TA A

G C

C GT A 3�

3�

Ligase

Ligase

Emulsion Bead

F
irst B

ase

Second base

A

A

C

C

G

G

T

T

Fig. 6.10 Schematic diagram shows the principle of ABI SOLID sequencing technology
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6.4.3.4  Advantages and Disadvantages

The advantage of ABI/SOLiD sequencing technology is that it is the only next- 
generation sequencing system that uses ligation-based chemistry with di-base 
probes which accounts for its high accuracy and downstream data analysis system 
(Men et al. 2008; Guzvic 2013; Ambardar et al. 2016).

The major limitation of ABI SOLiD Sequencing technology is its shortcoming in 
sequencing the palindromic sequences, identifying them as miscellaneous random 
sequences. The obscure error began approx. 2 bps prior to the palindromic sequence.

6.4.4  Ion Torrent Sequencing

6.4.4.1  History

The technology of ion torrent sequencing was licensed from DNA Electronics Ltd., 
a company focused on innovation in the field of DNA sequencing and in particular 
next-generation sequencing technology. It was the Ion Torrent Systems Inc. which 
developed and commercialized the technology in February 2010. The product which 
came to be known as the Ion Personal Genome Machine (PGM) is commercialized 
as a rapid but economical sequencer.

6.4.4.2  Principle

Ion torrent platform is the first post light sequencing technology. Rather than using 
light as an intermediary. It is a semiconductor-based sequencing detection system 
based on the detection of H2 ions which are by-products of nucleotide additions to 
the template strand during polymerization. The beads containing enriched DNA 
template are added to a microwell in the chip. The microwell will be added with the 
single type of nucleotide at a single time with the intermittent wash. The comple-
mentary nucleotides are incorporated into growing strand of DNA. This will result 
in the release of hydrogen ion which results in the change in pH that is detected by 
the sensor on the bottom of the well and converted to an electric signal that is moni-
tored (Fig. 6.11), (Golan and Medvedev 2013).

6.4.4.3  Procedure

The sequencing of DNA is done using a semiconductor chip, which has millions of 
wells that can capture chemical information and translates them to digital informa-
tion. The DNA sample is fragmented. Each fragment is attached to a bead and is 
amplified until it covers the bead by clonal amplification. This automated process 
covers millions of beads with millions of different fragments. The beads then flow 
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across the chip each depositing into a well. Each microwell on the semiconductor 
chip hosts numerous copies to sequenced ssDNAs molecules. The chip is then 
flooded with unmodified deoxyribonucleoside triphosphate. The complementary 
nucleotides are incorporated by DNA polymerase into the growing strand. However, 
there will be no nucleotide incorporation when noncomplementary strand is found. 
When a dNTP is incorporated into a single strand of DNA, a hydrogen ion is 
released. The release of H2 ion results in changes in the pH of the solution in each 
well. An ion-sensitive layer beneath the good measures that change in pH and con-
verts it into voltage. The characteristic change in voltage on the incorporation of a 
nucleotide is recorded (Fig. 6.11) (Ambardar et al. 2016).

6.4.4.4  Advantages and Disadvantages

The main advantage of ion torrent sequencing is that it utilizes relatively simple 
sequencing chemistry and requires a very small sample size. It takes a maximum of 
2–3 hours for sequencing with a rapid turnaround time of approximately 2 days. It 

Fig. 6.11 Workflow and principle of Ion Torrent Sequencing technique
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also has flexible semiconductor chips on PGM and proton systems, making it easier 
to operate for different throughput needs.

The disadvantage, however, is that the error rates for some specific regions are 
higher as seen in the case of homopolymer repeats found in some sequences.

6.5  Third-Generation Sequencing

Even though second-generation sequencing technologies have enabled sequencing 
several genomes at a reduced cost, analysis of large structural variations and de 
novo sequencing was challenging. The subsequent era in DNA sequencing focuses 
on removing the need for DNA amplification and producing longer reads in a single 
run. The technology is however still under research and development.

6.5.1  Single-Molecule Real-Time Sequencing

6.5.1.1  History

Single-molecule real-time sequencing (SMRT) is a third-generation DNA sequenc-
ing method used for long-read sequencing of DNA and enables real-time single- 
molecule DNA sequence determination. This technology was developed and 
patented by Pacific Biosciences of California, Inc. in the year of 2011, wherein 
PacBio RS was their first product sold commercially.

In April 2013, a newer version of the sequencer, PacBio RS II, was released with 
double the probability of an outcome. At the latest, the company announced in 
September 2015 the launch of a modified and innovative sequencer called the 
Sequel System with a sevenfold increase in the outcome capacity when compared to 
PacBio RS II.

6.5.1.2  Principle

The principle behind the Pacific biosystems SMRT is sequencing by synthesis is 
quite different from other sequencing techniques. It uses a single molecule for 
detection, so no amplification step is required to prepare the amplicon library. In this 
method, the DNA polymerase is immobilized using the biotin-streptavidin system 
in the bottom of the microwell with zeptoliter (10−21liters); volume waveguides are 
very small compartments, present on the SMRT cell, which guide attenuated light 
to pass through wherein the wavelength of light is much larger than the volume of 
the chamber (Fig. 6.12).

Phospho-linked nucleotides nothing but fluorescently labeled nucleotide are 
added to the well, and fluorescent label is detached from nucleotide once it is incor-
porated into the single standard template DNA strand which is coupled with the 
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immobilized DNA polymerase. The released fluorescent was detected and captured 
from the bottom of the well. The four nucleotides are added simultaneously; the 
detection is made in real time with the high-speed sequencing comparatively as 
individual nucleotides are flushed sequentially.

6.5.1.3  Procedure

The entire workflow of SMRT sequencing is as follows: SMRTbell template prepa-
ration. The foremost step is DNA shearing wherein DNA is fragmented using 
Covaris S2, LE220 system, Covaris g-tube devices, or HydroShear instrument. 
These devices are variably used depending upon the size of the fragments required. 
Then the DNA is concentrated using AMPure PB beads. Next, DNA is repaired for 
any damage like nicks or thymine dimer formation, deaminated cytosine formation, 
etc. Further end repair is performed to make the ends of the fragments suitable for 
ligation of adapters. T4 DNA polymerase is used for 5′ filling up of overhanging 
and 3′ removal. Next, ligation of hairpin looped adapters occurs at the ends of the 
DNA fragment. These adapters allow both forward and reverse read in the same 
trace. Next, the purification is done by treating the fragments with exonuclease III 
and VII. Finally, the primer is annealed to the ligated adapters in the SMRT tem-
plate, and DNA polymerase is added as well.

Fig. 6.12 Single Molecule 
Real Time Sequencing 
(SMRT) Technology. 
(SMRT Sequencing - 
PacBio, https://www.pacb.
com/smrtscience/
smrt-sequencing/)

6 Introduction to Nucleic Acid Sequencing

https://www.pacb.com/smrtscience/smrt-sequencing/
https://www.pacb.com/smrtscience/smrt-sequencing/
https://www.pacb.com/smrtscience/smrt-sequencing/


120

The PacBio RS II runs, and then automated primary, secondary, and tertiary anal-
ysis occurs. Within the ZMW, the DNA template polymerase complex is fixed using 
MagBead or diffusion system. Phospho-linked nucleotides are added to the cham-
ber with each of the four nucleotides phosphate backbone tagged with a fluoro-
phore. If a base is complementary and gets attached to the fixated complex, 
fluorescence occurs, and the tagged phosphate backbone is cleaved and removed. 
Massively parallel sequencing of SMRT leads to greater output in the single cycle 
(Buermans and Dunnen 2014; Ambardar et al. 2016).

6.5.1.4  Advantages and Disadvantages

The main advantage of SMRT is that it can efficiently be used for de novo assembly 
of long-read sequences, and it gives uniform outcomes which are important when it 
comes to GC-rich region sequencing. The platform can be used for base modifica-
tion and isoform detection for nearly all organisms.

The disadvantage with SMRT is that it is cost-effective and startup costs and 
subsequent costs are high. It also has a 5–15% of error rate specifically in cases of 
insertions or deletions (Ari and Arikan 2016).

6.5.2  Nanopore Sequencing

6.5.2.1  History

Nanopore sequencing technology has been researched on since before next- 
generation technologies came into play. In the early 1990s, David Dreamer and 
George Church, independently theorized that a ssDNA could be sequenced by pass-
ing through a nanopore. They would later go on to file a patent for nanopore 
sequencing. In 1996, Dreamer, Branton, and Kasiannowicz published their results 
on DNA translocation detection through alpha hemolysin nanopore.

The breakthrough in nanopore sequencing technology came in 2001 with the 
discovery of solid-state nanopore, otherwise, synthetic nanopore which can be fab-
ricated on the Si3N4 membrane. In 2005, Oxford Nanopore Technologies was set 
by Hagan Bayley along with Spike Willcocks, David Norwood, and Gordon 
Sanghera. It is the first company to offer commercial sequencers with nanopore- 
based technology (Fig. 6.13) (Lu et al. 2016).

Fig. 6.13 Nanopore 
sequencer. (media@
nanoporetech.com)
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6.5.2.2  Principle and Procedure

Nanopore sequencing relies on porins which are transmembrane proteins that cre-
ated a porous channel across a membrane. Nanopore sequencing system consists of 
either biological nanopores (α-hemolysin or Mycobacterium smegmatis porin A) or 
solid-state nanopores (Si3N4 and SiO2 nanopores) which are set in a polymer mem-
brane of high electrical resistance. A voltage is maintained across the membrane by 
passing an ionic current. When an analyte passes through the pore, the current is 
disrupted, and the disruption is utilized to identify the specific molecule.

The DNA sample to be analyzed is kept intact and mixed with copies of a proces-
sive enzyme. DNA enzyme complex approaches the nanopore, the single-stranded 
DNA is pulled through the aperture, and the enzyme latches the DNA strand through 
the nanopore one base at a time. The processing of nucleotides through the nano-
pore creates characteristic disruptions in the flow of electric current. The signal 
hence generated is used to determine the order of the bases (Fig. 6.14) (Buermans 
and Dunnen 2014; Feng et al. 2015; Ambardar et al. 2016; Deamer et al. 2016).

6.5.2.3  Advantages and Disadvantages

The main advantage that nanopore technology has to offer is inexpensive sample 
preparation and elimination of the need for nucleotides or ligases. From this alone, 
the cost per strand for nanopore technology would be far less than Sanger method 
or any next-generation sequencing technology. The main limitation of nanopore 
sequencing is the translocation speed of the nanopore. Nanopore sequencing is still 
a relatively new technology with a lot of potential and scope for development in the 
near future (Branton et al. 2008).

Fig. 6.14 Nanopore sequencing technique. (media@nanoporetech.com)
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6.5.3  NGS Data Analysis

Data analysis is important in terms of next-generation sequencing. After sequencing 
reaction, raw sequence data generated, there are important analysis steps that the 
data must processed. A generalized data analysis pipeline includes removing the 
adapter sequences, removing low-quality reads, reference genome mapping or de 
novo alignment, and analysis of the compiled sequence (Fig. 6.15). Based on the 
application, different bioinformatics pipelines are used. Variant calling for detection 
of mutations (SNPs or indels), expression analysis for transcripts, and somatic and 
germline mutations analysis for clinical diagnosis. Various online and offline bioin-
formatics tools are available for several different NGS data analysis.

6.5.4  Applications of High-Throughput DNA Sequencing

NGS has enormous application in many fields of genomics. Gene identification in 
terms of regulatory elements and pathological identification are done through rese-
quencing. Whole genome sequencing of various organisms, as well as bacteria and 
viruses in the field of public health, is made possible by NGS. Gene expression, 
noncoding RNA, and epigenetic modification are some of the main application of 
NGS. Circulating cell-free DNA (cfDNA) and prenatal DNA analysis are the major 
current application. Moreover, in the future, NGS will be important toward personal 
genomics and expression studies in the personalized medicine (Grada and 
Weinbrecht 2013; Ambardar et al. 2016).

Fig. 6.15 An example of NGS data alignment and analysis tool. http://www.keywordlister.com/
bmdzIGRhdGEgYW5hbHlzaXM/
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6.5.4.1  Whole-Exome Sequencing (WES)

Sequencing entire human genome is possible with the available NGS technology, 
but researchers and clinicians are interested in the protein coding regions which are 
referred to as exome. Only 1% of the genome is coding for protein, and the remain-
ing 99% of the human genome is noncoding regions or sometimes called junk DNA. 
Mutations occurring in these protein-coding regions give rise to truncated or non-
functional proteins which may give rise to diseases and various clinical presenta-
tions. Exome sequencing provides a fast and affordable way of determining the 
genetic cause of a disease or a clinical condition. Exome sequencing is very useful 
in identifying disease-causing mutations in pathogenic conditions when the extract 
genetic cause is not known (Grada and Weinbrecht 2013).

6.5.4.2  Whole-Genome Sequencing (WGS)

In addition to whole exome sequencing, with the available next-generation sequenc-
ing technology, it is possible to sequence the entire 3 billion basepairs of an indi-
vidual, which is termed as whole genome sequencing (WGS). Sequencing 
the whole genomes can provide more valuable information on diversity, cancer pro-
gression, and other genetic disorders. WGS can capture small and large variant 
which might otherwise miss by the other methods. Apart from studying human, it is 
equally useful for sequencing other species such as important livestock, plants, and 
pathogens. WGS sequencing is possible with Illumina and SMRT sequencing tech-
nology. With the long reads in the nanopore sequencing technology, WGS is possi-
ble, but it is being refined. But handling the whole genomic data is challenging but 
with the growing knowledge in the field of bioinformatics is made possible to han-
dle such big data.

6.5.4.3  Targeted Sequencing

Targeted sequencing is another approach in NGS, in which selected specific genes 
or genomic regions are targeted. Targeted sequencing is affordable and gives higher 
coverage of genomic regions of interest, and it also narrows down the analysis of 
specific gene or genomic region. There are plenty of targeted sequencing panels 
available which target the hotspot regions for specific disease or combination of 
diseases. Moreover, there are target panels available for the clinical diagnostic pur-
pose, which gives rapid diagnosis of many diseases. Cancer hotspot mutation panel 
is to target hotspot cancer-causing mutation. The pharmacogenomic panel is 
another example to detect drug efficacy safely based on the genome (Grada and 
Weinbrecht 2013).
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6.5.4.4  RNA Sequencing/Expression Analysis

In recent scientific world, RNA sequencing is one of the important sequencing 
applications. In general, RNA sequencing is done by converting it to complemen-
tary DNA, also referred to as cDNA by the enzyme reverse transcriptase (RNA- 
dependent DNA polymerase). cDNA is commonly used in sequencing studies to 
discover the coding sequence of expressed genes and study the level of gene expres-
sion. Microarray technology is one of the common methods used to measure known 
targeted genome-wide gene expression which is now getting replaced by RNA 
sequencing. The NGS-based RNA sequencing (RNA-seq) has multiple applications 
in scientific experiments. It provides an accurate measurement of gene expression 
for the entire transcriptome than microarray. RNA-seq technique is not only useful 
in the detection of the mutations, but it also helps in measuring amount of spliced 
transcripts and in interrogating wide variety of nonprotein-coding RNAs.

The discovery and functional analysis of noncoding RNA (ncRNA) have been 
the exiting areas of biological research. There are protocols to sequence small 
nonprotein- coding RNA molecules to understand the function of noncoding RNAs 
such as miRNA, siRNA, snRNA, snoRNA, piRNA, etc. Most protocols for RNAseq 
in eukaryotic cells use poly(T) oligonucleotides to isolate mRNA with poly(A) tails 
or use poly(T) primers in combination with random short oligomers for reverse 
transcription. After poly(A) enrichment and cDNAsynthesis, most protocols shatter 
cDNA molecules into small fragments (from 100 to 300 bp) that are then ligated 
with oligomers specific for the sequencing system (Brown and Goecks 2015).

6.5.4.5  Metagenomics

NGS technology is useful in microbial genomics, especially in the metagenomics 
measuring the genetic diversity encoded by microbial life in organisms inhabiting a 
common environment, for example, metagenomic analysis gut microbiome which 
gives the clear details of the various pathogen infections. Analyzing the collection 
of microbes in and on the human body will contribute to understanding human 
health and disease. Changes in the microbial community are linked to the immune 
system, obesity, and cancer (Bragg and Tyson 2014).

6.5.4.6  Methylation Studies/Bisulfite Sequencing

Nowadays, using NGS technology, it is possible to study genome-wide DNA meth-
ylation. The methylation study was normally done using bisulfite whole genome 
sequencing or methylated CpG island recovery assay. Sequencing both untreated 
and bisulfite-treated DNA will highlight the C-nucleotides that are methylated and 
not chemically converted resulting in a T when sequenced (Buermans and Dunnen 
2014; Masser et al. 2015).
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6.5.4.7  Ancient Genomes

There are challenges in studying the precious ancient DNA samples from a fossil. 
The advent of NGS made it possible to directly sequence the nuclear genome, which 
previously permitted to do only mitochondrial DNA (Der Sarkissian et al. 2015).

6.5.4.8  ChIP-seq

Another application by NGS technology is to study the protein binding sites in 
genomic DNA, especially transcription binding site based on chromatin immune 
precipitation (ChiP).  Initially, it was done using microarray technology. Many 
proven studies using ChiP-seq by NGS technology reveal genome-wide profiles of 
protein binding sites with increased coverage (Buermans and Dunnen 2014).

6.5.4.9  Noninvasive Prenatal Testing

It is well-known that DNA of the fetus can be found in maternal blood in very low 
level, and it is very difficult to differentiate maternal from fetus DNA. But using the 
power of NGS technology and the analysis method, it is possible to study circulat-
ing DNA of the fetus from maternal blood. This is useful in identifying trisomies, 
trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 
(Patau syndrome). It could be determined using 20 ml of maternal blood from gesta-
tion week 10 using various NGS platforms (Buermans and Dunnen 2014).

6.6  Conclusion

The DNA sequencing techniques are key tools in the scientific world revolutioniz-
ing many fields of science and are increasingly used in health care especially in the 
field of oncology, inherited disorders, and infectious diseases. The current chapter 
traverses in the chronological order, describing different generations of sequencing 
technology, underlining few key discoveries, scientists, and sequences along the 
way.
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7.1  Introduction

7.1.1  Biological Sequences and Their Analysis

A biological sequence is a single, continuous molecule of nucleic acid or protein. 
The nucleic acid sequence is composed of nucleotides. The nucleotides adenine, 
thymine, guanine, and cytosine (ATGC) act as building blocks of deoxyribonucleic 
acid (DNA), and adenine, uracil, guanine, and cytosine (AUGC) act as building 
blocks for ribonucleic acid (RNA) molecules. In contrast to this, the primary protein 
structure is composed of a linear chain of amino acid molecules.

The elucidation of molecular sequence information is the gift of advancements 
in modern molecular bioanalytical technologies, which has not only made the anal-
ysis of biological sequences an quickly achievable task but made it more accurate. 
The most evident example of these advancements is, the Human Genome Project, 
which produced an immense amount of data for research in human health care 
(Chial 2008). The methodologies implemented under sequence analysis include 
sequence alignment (pairwise sequence and multiple sequence alignment), phylo-
genetic analysis, motif and domain search/prediction and genome or transcriptome 
comparative study, and identification of novel genes for the drug. Sequence align-
ment is also an essential step in molecular phylogenetic, for analysis of homologues, 
orthologues, and paralogues genes as well as identification of mutations in various 
leading genetic disorders.

This chapter covers different computational approaches of sequence alignment 
like (1) pairwise alignments, global and local alignment by dynamic programming 
with different scoring schemes; (2) sequence profile alignment, where one sequence 
aligned with a set of query sequences; (3) multiple sequence alignment, which cov-
ers several methods for alignment like progressive alignment and iterative and pro-
file alignment; and (4) phylogenetic analysis, which is an integral part of multiple 
sequence alignment. This chapter covers phylogenetic and sequence evolutionary 
relationship analysis, using different methods like maximum likelihood and neigh-
bor-joining methods.

7.2  Pairwise Sequence Alignment

7.2.1  An Introduction to Pairwise Alignment

The first question which comes in mind of every biologists after the sequencing 
process is how similar are the two sequences? This simple question arises in bioin-
formatics during assembly of overlapping sequence fragment into contigs, and 
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alignment of new sequences against reference genomes. After finishing alignment, 
we have to decide whether the alignment is more likely to have occurred because the 
sequences are correlated just by chance. These alignments may be global or local 
(as mentioned in Fig.  7.1). These sequence alignment methods are essential for 
retrieving essential information from biological sequences, like sequence homol-
ogy, annotation, pathway identification, phylogenetic relationship, modeling of 3D 
structures, motif, domain identification, and many more discussed further in this. 
The goal of pairwise alignment is to find the conserved region (if present) between 
two or more sequences; these conserved regions are supposed to be an important 
and functional region (domain or motif) in the sequences. A simple example of a 
pairwise sequence alignment given in Fig.  7.2. The human hemoglobin subunit 
alpha (HBA_HUMAN) (P69905) was used as a query (sequence to be aligned with 
other sequences) sequence, and other four subunit sequences of hemoglobin (HBB_
HUMAN) (P68871), (HBG2_HUMAN) (P69892), (HBD_HUMAN) (P02042), 
and (HBG1_HUMAN) (P69891) were considered as a subject sequence for com-
parison. The alignment was performed by NCBI BLAST tool using BLOSUM 62 
scoring matrix (discussed later). In Fig.  7.2a, HBB_HUMAN was aligned with 
HBA_HUMAN sequence; in this alignment, we can see that there are many posi-
tions at which two corresponding residues are identical; many others are function-
ally conservative such as T-S representing the alignment of threonine with a serine 
both polar and tiny residues. Similarly, Fig. 7.2b also represents important align-
ment, showing the evolutionary relationship among two sequences, having most 
identical residues with fewer gaps; some of the new residues were showing 
unmatched which indicates some insertion of new residues during the evolution of 
time. To distinguish between the alignments of sequences represented in Fig. 7.2a, b, 
using pairwise alignment method a scoring matrix is often used.

Fig. 7.1 Represents the global and local sequence alignment
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7.2.2  Methods of Sequence Alignment

Sequence alignment has been classified into two major classes namely Global and 
Local alignment as shown in Fig.  7.1. Global alignment follows an approach of 
aligning the entire sequences by matching as many characters as possible in both 
ends of each sequence. The sequences having the same length are best suited for 
global alignment. In local alignment, sequence matched density will be considered, 
generating one or more sequence islands in whole sequence stretch (Polyanovsky 
et al. 2011). Local alignment is, suitable, for sequence alignment that is similar in 
their lengths, but dissimilar in others, a sequence that differs in length or sequences 
that share a conserved region or domains.

7.2.2.1  Global Alignment

An alignment is meant to say global alignment when closely related sequences of 
the same length are aligned together; the alignment of the sequence is carried out 
from the start to end of the sequence while searching for best possible alignment. 
The algorithm of aligning two protein sequences, published by Needleman and 
Wunsch in 1970 (Needleman and Wunsch 1970) was the first dynamic program-
ming application for biological sequence analysis. This algorithm beautifully 
divides the larger problem (e.g., the full sequence) into a series of smaller problems, 
which are then solved and reconstructed to the larger problems. It is also known as 
optimal matching algorithm and the global alignment. The best illustration of the 
global sequence alignment is represented in Fig.  7.1, where two sequences are 
aligned with each other. Some software like EMBL-EBI EMBOSS (https://www.
ebi.ac.uk/Tools/psa/emboss_needle/), which is based on Needleman- Wunsch algo-
rithm, creates an optimal global alignment of two sequences, where another server 
EMBOSS Stretcher uses a modification of the Needleman-Wunsch algorithm that 
allows more massive sequences to be globally aligned. The list of some global 
alignment software are mentioned in Table 7.1.

Fig. 7.2 Represents the pairwise sequence alignment of five orthologous sequences
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7.2.2.2  Local Alignment

Local alignment is mainly used for those sequences which differ in sequence length. 
This method finds local matches within the sequence stretch instead of looking at 
the entire sequence; Smith-Waterman algorithm, a dynamic programming algo-
rithm which was developed by Smith and Waterman in 1981, was used for local 
alignment; this algorithm compares segments of all possible lengths and optimizes 
the similarity measures. Local alignment uses scoring matrices (PAM, BLOSUM) 
(discussed in Sect. 2.4.1) which give the user a choice to choose the appropriate 
scoring system based on the goals. It is suggested that the user may try different 
combinations of scoring matrices while using local alignment. There are many soft-
ware which use Smith-Waterman algorithm to build alignment of sequences; some 
of these are mentioned in Table 7.1; here the most popular and widely used software 
is NCBI-BLAST (basic local alignment search tool); it can be used online or offline 
on the local machine (Altschul et al. 1990).

BLAST (basic local alignment search tool) is the most commonly used tool for 
sequence alignment and similarity search. BLAST tool is fast and can be used in 
analysis of more than 1000s of sequences and even for comparison of two genomes 
(Altschul et al. 1994). BLAST is freely available for everyone and downloadable 
(ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/). This tool is straight-
forward to handle and produces very informative data; it can be used on the local 
machine by merely downloading the setup, or user who is not much handy with 
command line (available at https://www.ncbi.nlm.nih.gov/BLAST/). The BLAST 
method is a word search heuristic method which eliminates the irrelevant sequences 
and saves search time. The program search sequences by setting a word length W 
(usually 3 for amino acid and11 for nucleotide sequences).This program uses a 
heuristic approach that approximates the Smith-Waterman algorithm for sequence 
alignment between the query and subject sequence (existing sequence in the data-
base). BLAST algorithm is a sequential stepwise method as mentioned below.

 1. The program removes low-complexity region or sequence repeats in the query 
sequences.

 2. It builds a K letter word list of the query sequence, where k = 3 for protein 
sequence and k = 11 for DNA sequence (k means the number of characters of 
sequence).

 3. List of the probable matching word will be created from matched query 
sequences, and the score was generated using scoring substitution matrix.

 4. Organizes the remaining high-scoring words an efficient search tree.
 5. Then the step 3 and step 4 are to be repeated for each k-letter word in the query 

sequence.
 6. In next program, scan the database sequences for exact matches with the 

remaining high-scoring words.
 7. Extend the exact matches to high-scoring segment pair (HSP).

7 Tools and Methods in the Analysis of Simple Sequences
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 8. Lists out all the HSP matched in the database whose score is high enough to be 
considered.

 9. Evaluate the significance of the HSP score.
 10. Make two or more HSP regions into a more extended alignment.
 11. The program shows the gapped smith-waterman local alignments of the query 

sequences and each of the matched database sequences.
 12. Finally, the program represents every match, whose expect score is lower than 

a threshold parameter E (expect value) in the result form.

BLAST has seven subprograms as listed below:

• BLASTn (aligns nucleotide query sequence with nucleotide database).
• BLASTp (aligns protein sequence with protein database).
• PSI-BLAST (protein-specific iterative BLAST) (the program used to find dis-

tinctly related protein).
• BLASTx (used to align nucleotide sequence with protein database by comparing 

six-frame conceptual translation of nucleotide sequence).
• tBLASTx (aligns query nucleotide possible six-frame converted sequence with 

converted nucleotide six-frame sequences of the database),
• tBLASTn (aligns protein query sequence with translated nucleotide database),
• MegaBLAST (the program used when comparing a large number of input 

sequences via command line).

There are many software programs and webservers which uses the extended ver-
sion of BLAST software within their servers and databases. An example has been 
given below for sequence alignment using the online NCBI BLAST tool in Figs. 7.3, 
7.4, 7.5, and 7.6. BLAT is another algorithm which is used in pairwise sequence 
alignment. This program was developed by Jim Kent to support the annotation of 
the Human Genome Project (Kent 2002). It can be used to align both DNA and 
protein sequences and designed to work best of a sequence having more similarity, 
the sequence of 40 base length that share ≥95% nucleotide identity or ≥ 80% trans-
lated protein identity (Bhagwat et  al. 2012). BLAT can be used both online and 
offline available at http://genome.ucsc.edu/cgi-bin/hgBlat. The WU-BLAST 
(Washington University BLAST) version 2.0 is another powerful software package 
for gene and protein identification; it is based on the public domain NCBI BLAST 
version 1.4 (Altschul et  al. 1990), and it can be downloaded from https://blast.
advbiocomp.com/. This program is slightly different from NCBI BLAST, except 
both versions derived from un-gapped NCBI BLAST 1.4.

Local alignment example: this example shows the sequence alignment using the 
online NCBI-BLAST tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi); blastp (https://
b l a s t . n c b i . n l m . n i h . g o v / B l a s t . c g i ? P RO G R A M = b l a s t p & PAG E _
TYPE=BlastSearch&LINK_LOC=blasthome) is selected because we used 
[P68871] HBB_HUMAN (hemoglobin subunit beta) protein sequence for align-
ment; in database selection field, we selected NCBI nonredundant protein sequences 
(nr) database, and the rest of the parameters were kept as default.
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FASTA (https://fasta.bioch.virginia.edu/) is a first sequence alignment program 
used for DNA and protein sequence alignment, previously described as FASTP by 
David J. Lipman and William R. Pearson in 1985 (Lipman and Pearson 1985). It 
uses FASTA sequence format as an input file which is now standard for every 
sequence alignment software; it is slow but accurate as compared to BLAST. FASTA 
is inversely related and depend on the K-tuple variable, which specifies the word 

Fig. 7.3 NCBI-BLAST window for performing local alignment

Fig. 7.4 Alignment result shows the homologous protein sequences aligned with the query HBB_
HUMAN hemoglobin protein sequence

Y. Kumar et al.
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size; typically searches are run with word size k = 3, but, if high sensitivity at the 
expense of speed is desired, one may switch to word size k = 2. An example is 
shown below in Fig. 7.7.

Fig. 7.5 NCBI-BLAST tool comprises features for aligning two or more sequences with each 
other. This example shows the alignment of HBB_HUMAN with HBA_HUMAN. For aligning 
more than two sequences, the user should click on the Align two or more sequences option as 
shown in the above figure

Fig. 7.6 The results give the local alignment of two sequences with 97% query covered (means 
query sequence was covered 97% while aligning with another sequence) and reproduce only 43% 
identity

7 Tools and Methods in the Analysis of Simple Sequences
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7.2.2.3  Significance of Global and Local Alignment

Sequence alignment is an essential post-molecular sequencing step to reveal the 
structural, evolutionary, and functional information about molecular sequences. 
While performing sequence alignment, users need to follow some steps; at first, 
users should be careful about the selection of alignment results, which is produced 
by sequence alignment tools. Users should not trust blindly on the scoring and iden-
tity percent matching obtained from the sequence alignment. The best method for 
sequence alignment having the same length sequences is global alignment as we 

Fig. 7.7 Online FASTA tool, which provides sequence similarity searching against protein data-
bases using the FASTA suite of programs (https://www.ebi.ac.uk/Tools/sss/fasta/). Using this tool, 
users have to follow four steps. Step 1: Select protein database of choice from the selection check-
box. Step 2: After selecting the database to enter the fast format, query sequence in input text 
window. Step 3: Set the parameters from the program. Step 4: Click on submit button

Y. Kumar et al.
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discussed previously in this chapter that global alignment program is considered to 
match sequences from end to end and will search for the best possible score as it 
does not remove any unmatching regions of the sequence. Local alignment algo-
rithm is used for aligning the sequences which are having different length; this 
algorithm is essential for searching distinctly related sequences, diverged sequences, 
and convergent sequences; in exploring the functional region of sequence, domain 
analysis, and motif analysis; and for molecular structure modeling.

7.2.3  Sequence Similarity and Scoring Methods

7.2.3.1  Dot-Matrix Method

The first method which was applied in sequence comparison was “dot-matrix analysis” 
or the dot plot method. Gibbs and McIntyre in 1970 first published this method by com-
paring two sequences (Gibbs and McIntyre 1970). This analysis is done by putting one 
sequence along the y-axis vertically on the right or left side and another sequence on 
x-axis horizontally on top as shown in Fig. 7.8. This method generates a simple matrix of 
sequence, while each item of the matrix is a measure of similarity of those two residues 
on the horizontal and vertical sequence. In the dot matrix, all identical proteins show a 
diagonal line in the center of the matrix, and if some insertion or deletion was introduced 
in the sequence, then it will give rise to disruption in this diagonal. Some more diagonal 
lines were also seen in the matrix; these diagonal lines are the region which is matched 
with each other in addition to the central diagonal. The partial diagonal line forming other 
than the central diagonal line was considered as noise, which can be reduced by only 
shade runs or “tuples” of residues, e.g., a tuple of three corresponds to three residues in a 
row. This method is useful because the chance of coming three residues match in continu-
ous form is less than the chance of coming single residue match (Maizel and Lenk 1981).

7.2.3.2  Dynamic Programming

This method was prevalent and used in computer science, mathematics, management 
science, economics, and bioinformatics. This method was first implemented for global 
sequence alignment by Needleman and Wunsch (1970) and local alignment by Smith 
and Waterman (1981), which provides one or more alignments of the sequences. The 
sequence alignment method is faster in dynamic programming. This method generates 
a matrix of numbers that represent all possible alignment between the sequences. The 
score generated by this method defines the quality of alignment; the higher the score, the 
more optimal the alignment. Two matrices which were designed for amino acid (protein 
sequence) are PAM 250 (percent accepted mutation 250) (Dayhoff et  al. 1978) and 
BLOSSOM 62 (block substitution matrix 62); they are used for scoring matches and 
mismatches. Similar matrices are available for aligning DNA sequences (we will 
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discuss more substitution matrices further). Dynamic programming can allow a differ-
ent form of alignments like nucleotide sequence alignment with protein sequences and 
vice versa. It evaluates frameshift offset by a random number of nucleotides and makes 
the method suitable for sequences covering a large number of indels, which can be dif-
ficult to align with more efficient heuristic methods (Pearson and Miller 1992).

7.2.3.3  Word Methods

Word method is a heuristic method which produces less optimal results for sequence 
alignment; this method is known as k-tuple methods. These are very useful in large- 
scale database searches. This method was implemented in BLAST and FASTA 
tools. Word method identifies the short non-overlapping sequences from the query 
sequence and then matches them with the candidate database sequences. In the 
FASTA, users can set the value to use it as word length for database search, although 
this method is slower, but very sensitive at a lower value of k, which is preferred for 
searching of short sequences. In the BLAST word size of k have some standard 
values like for protein sequence it is 2, 3 and 6, and for a nucleotide sequence, it is 
16, 20, 24, 28, 32, 48, 64, 128, and 256 the good rule of thumb is that query length 
must be twice the word size, if your query is a protein sequence of 4 residues, then 
the Word size should be reduced to 2.
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7.2.4  Alignment Scoring Schemes

7.2.4.1  PAM Matrices

PAM matrices, defined as percent or point accepted mutation, were first pro-
posed by Dayhoff and coworkers in 1978. These matrices are used for a sequnce 
pairs, which are similar to each other. Substitution frequency can be derived for 
a sequence, which represents the value of frequencies of an evolution. These 
matrices represent mutations that have been accepted by natural selection. PAM 
matrices are generally used to score the alignment of amino acid sequences. One 
PAM of evolution means 1% of amino acid (from 20 amino acids) changed dur-
ing evolution. This matrix is used in both global and local alignment. PAM1 is 
the matrix calculated from comparison of sequences with no more than 15% 
divergence but corresponds to 99% sequence identity. PAM matrices have five 
sub-matrices, PAM100, PAM120, PAM160, PAM200, and PAM250. If a person 
wants to compare closely related sequences, lower number PAM is used, while 
a higher number PAM is used when comparing distantly related protein sequences 
(Henikoff and Henikoff 1992a, b). The most common PAM matrix is PAM 250; 
it represents a greater degree of evolutionary divergence and corresponds to 
multiply the PAM 1 by itself 250 times via a process called dynamic 
programming.

7.2.4.2  BLOSUM Matrices

BLOSUM (Block Substitution Matrices) matrices are used for protein sequence 
alignment; these matrices were used for alignment of the sequences which are evo-
lutionary diverse. Henikoff and coworkers introduced these substitution matrices in 
1992 (Henikoff and Henikoff 1992a, b). It scans the BLOCKS from the database for 
many conserved regions of protein families that have no gaps in the sequence align-
ment, and the relative frequency of amino acids and substitution probabilities was 
counted, and log-odds score for each of the 210 possible substitution pairs of the 20 
standard amino acids was calculated. The number added with BLOSUM matrices 
indicates the percent identity level of sequences in the alignment. For example, 
BLOSUM62 means that sequences with approximately 62% identity will be 
counted.

The sequence identity matrix is a simple mathematic formula used for compar-
ing two amino acid sequence residues that are identical with no substitution of a 
single amino acid residues is acceptable like in substitution matrices. In the pro-
cess of sequence alignment, some gaps are generated between the characters to 
align the two sequences, and for matching the conserved portion, these gaps can 
occur because of single mutations, unequal crossover in meiosis, or gene duplica-
tion. These gaps are of two type gap opening and gap extension, and penalty score 
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was generated for both and termed as gap opening penalty and gap extension pen-
alty as proposed by Sellers (1974) and Gotoh (1982). These two penalties have 
been long used to model insertion and deletions in sequence alignment methods. 
The penalties were designed to reduce the score when alignment has been dis-
turbed by indels.

7.3  Multiple Sequence Alignment

7.3.1  An Introduction

Advancement of molecular biology contributes to the biology and reveals that all 
the related or similar sequences contain conserved region across widely divergent 
species; they often perform a similar or even identical function (Lipman et al. 1989). 
These conserved regions are almost identical or same in genes despite being in a 
different organism. During the period, learning of molecular biology and sequence 
analysis presents potential results using advance tools, techniques, and bioinformat-
ics software. Multiple sequence alignment (MSA) is just an extension of pairwise 
sequence alignment, where multiple sequences can be aligned at a time. In this, 
multiple sequences are aligned together by adjusting the characters in a single col-
umn and match the maximum character by inserting gaps between the sequences 
where required, as shown in Fig. 7.9. MSA is useful in identifying the domain and 
conserved motifs in multiple sequences; these conserved motifs can be used to 
locate the active catalytic sites of enzymes (Wang and Jiang 1994). In nucleic acids, 
MSA reveals the structural and functional relationship between the multiple 
sequences, by which a promoter sequence can identify within the consensus binding 
sites for regulatory proteins.

7.3.2  Methodologies Used in Multiple Sequence Alignment

7.3.2.1  Progressive Method

This method is known as progressive technique (also known as hierarchical, or tree 
methods) developed by Paulien Hogeweg and Ben Hesper in 1984. It uses dynamic 
programming methods to build an MSA starting with the most related sequences 
and then progressively adding less related sequences or group of sequences to the 
initial alignment (Waterman and Perlwitz 1984; Higgins et al. 1996; Mount 2009). 
In pairwise alignment method, insertion in sequences is not distinguished from 
deletion, but traditional progressive algorithms inherently consider all gaps as dele-
tions and use heuristics to correct for the cost of repeated handling of insertions 
(Löytynoja and Goldman 2005). The challenge to the MSA method is to use an 
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appropriate combination of sequence weighting, scoring matrix, and gap penalties 
so that the correct series of evolutionary changes may be found (Mount 2009 and 
Feng and Doolittle 1996).

The method is biologically sound and has the significant advantage of speed and 
simplicity; using it one can align hundreds of sequences, even on its personal com-
puters. More importantly, the sensitivity of the approach, as judged by the ability to 
align distantly related sequences, is very high. All of the methods described here are 
freely available in a computer program called CLUSTALW which can be run under 
a wide variety of operating systems (Higgins et al. 1996). In progressive alignment, 
there are two types of problems: (1) the local minimum problem and (2) the param-
eter choice problem. The local minimum problem is because of the moderate nature 
of progressive alignment, every time the alignment is carried out, the small propor-
tion of residues is misaligned. This proportion is tiny for the closely related sequence 
but will increase for diverse sequences. If during alignment the first two closely 
related sequences were aligned with error, the rest of the alignment will be dis-
turbed, and alignment goes with errors.

This problem can be overcome by computing position-specific gap opening and 
extension penalties as the alignment proceeds. Different amino acid weight matrices 
can also be used: “hard” ones for closely related sequences and “softer” ones for 
more divergent sequences (Higgins et al. 1996).

The software used for MSA are MEGA, T-Coffee, and ClustalX, MEGA 
(Fig. 7.10). These are the most popular freely available and widely used software 
(discussed in Sect. 4.3). It can be downloaded and installed on the local machine 
from http://www.megasoftware.net/. T-Coffee is another server for MSA available 
at http://tcoffee.crg.cat/, used for aligning DNA, protein, and RNA sequences; it can 

Fig. 7.9 The simple phylogenetic tree shows the relatedness between the sequences
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be used both online (http://tcoffee.crg.cat/apps/tcoffee/do:regular) and offline on 
different operating systems (Notredame et al. 2000). ClustalX is used for multiple 
sequence alignment on every platform; it is downloaded from  (http://www.clustal.
org/clustal2/). This software also supports phylogenetic tree visualization. Short 
phylogenetic tree reconstruction was represented below in Fig. 7.12.

In Fig. 7.10, multiple sequence alignment (MSA) is performed taking nine pro-
tein sequences from different plant species. These sequences belong to the same 
protein terpene synthase family; the result shows different color coding for amino 
acids which means same color amino acid has similar chemical nature; like aspartic 
acid, glutamic acid which is denoted by symbol D and E shows red color back-
ground, which means these amino acids both have the same acidic property and are 
polar; every color means the specific nature of amino acid. The single star at the top 
represents the highly conserved amino acid in all sequences; dash between the 
sequences represents the gap inserted while aligning the most conserved residues. 
MSA is useful in motif prediction and conserved pattern identification and for phy-
logenetic tree construction.

7.3.2.2  Iterative Methods

An iterative method is another method which is used for MSA to reduce the error of 
progressive alignment. It is an alternative method to overcome the general problem 
of progressive alignment method, where the error in the initial step produces the 
wrong alignment for the rest of the sequences; the problem becomes accurate when 

Fig. 7.10 An example of multiple sequence alignment (MSA): sequences were retrieved from 
different plants and aligned using the MEGA6 software
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alignment is between the distinctly related sequences. The iterative alignment 
method overcomes this problem by repeating and realigning the subgroups of the 
sequences, and further, this subgroup was aligned into the rest of the sequence; the 
primary objective is to improve the score of the alignment. Three programs that use 
iterative methods are MultiAlin, PRRP, and DIALIGN. MultiAlin (Corpet 1988) 
recalculates pairwise scores during the continuous alignment production; these 
scores were used for recalculating the tree, which is then used to refine the align-
ment to improve the score. The program PRRP uses iterative methods to produce an 
alignment.

7.3.2.3  Profile Sequence Alignment

Profile sequence alignment is a technique for identifying the putative structures and 
functions of sequences in profile analysis. This sequence comparing method is ben-
eficial in finding the distinctly related sequences by aligning sequences to a family 
of similar sequences. However, this alignment method is very different from itera-
tive and progressive methods. The protein sequences of the similar family are 
aligned together by multiple sequence alignment and then represented as a table of 
position-specific symbol comparison value and gap penalties; the matrix of similar 
family protein sequences is generated with this method. This matrix further can be 
used on multiple sequences to search for the protein sequence of the same family 
whose profile was generated. This method is speedy and widely used and can be run 
on the whole genome at a time. The use of profile alignment has been much used in 
PSI-BLAST program by Altschul et al. 1997.

7.4  Molecular Phylogenetic Analysis

7.4.1  Multiple Sequence Alignment and Phylogenetic Analysis

Multiple sequence alignment is the first and essential step for generating the phylo-
genetic tree (Ortet and Bastien 2010). Every column of alignment predicts muta-
tions that occurred at one site during the time of evolution of the sequence family, 
revealing which positions in the sequences were conserved and which diverges from 
a common ancestor sequence as represented in Fig.  7.13. When two sequences 
found in two organisms are very similar, it is assumed that they have derived from 
one ancestor (Higgins and Sharp 1988). The sequence alignment reveals the con-
served position throughout the ancestor sequence. MSA works in steps as shown in 
Figs. 7.10, 7.11, and 7.12. The necessary steps followed are: (i) calculate all pair-
wise alignments and associated distances; (ii) use the distances to build a trial phy-
logenetic tree; (iii) calculate pair weight based on the tree (divergence among 
sequences); (iv) produce a heuristic MSA based on the tree, from alignments; and 
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Fig. 7.12 Phylogenetic tree construction using MEGA6: A phylogenetic tree was constructed 
with sequences which were retrieved from different plants; these sequences were homologue to 
each other and belong to the same class except last sequence, i.e., Ocimum basilicum-mono, this 
sequence kept as an out-group

Fig. 7.11 Phylogenetic tree construction using MEGA6: phylogenetic tree as constructed using 
the neighbor-joining tree method

(v) determine relevant positions using heuristic MSA followed by scoring of opti-
mal alignment within the relevant space.

The phylogenetic analysis is used for several purposes, including the comparison 
of more than two sequences, analysis of gene families and subfamilies, including 
their functional prediction, and estimation of evolutionary relationship among the 
organisms and homologous sequences (Sokal and Michener 1958). The phylogenetic 
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relationship refers to the relative time in the past that species shared common ances-
tors. The evolutionary relationships between the sequences are represented by plac-
ing one unrelated sequence as an outer branch of a tree which is also known as 
out- group. The rest of the sequences in the inner branch of the tree represents the 
degree to which different sequences are related. By this analysis, most closely related 
sequences can be identified by examining the neighboring branches on a tree. The 
phylogenetic tree generally shows the divergence of lineage through time (i.e., the 
evolutionary relationship of taxa) among a set of the organism of a group of organ-
isms. The structure of the tree is represented in taxa (singular: taxon). The tips of the 
tree signify groups of descendent taxa (often species), and the nodes on the tree rep-
resent the common ancestors of those descendants. Two descendants that split from 
the same node are called sister groups. Many phylogenetic trees were represented 
with out-group of unrelated sequence from a group of sequences. The out- group was 
used in the larger group of sequence analysis; it gives a sense that the closely related 
sequences of the same group fall in the same cluster. In Fig. 7.13a, taxon A, B, and C 
were represented; taxon A and taxon B share the same nod, which shows that they 
have a common ancestor, where taxon C represented as an out- group of taxon A and 
taxon B.

Phylogenetic trees generated by computational methods can be either rooted or 
unrooted depending on the input data, and the algorithm used Fig. 7.13b, c. In a 
rooted tree, a single node designated as a common ancestor is known as cladogram, 
and a unique path leads from it through evolutionary time to any other node. 

Fig. 7.13 Represents the layout of the phylogenetic tree; (a) shows the key features of the phylo-
genetic tree, (b) showed the unrooted tree, and (c) showed rooted tree
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Unrooted trees only specify the relationships between nodes and say nothing about 
the direction in which evolution occurred known as phenogram. Roots can usually 
be assigned to unrooted trees through the use of out-group. There are several meth-
ods of constructing phylogenetic trees, discussed in next heading; all these can only 
provide estimates of what a phylogenetic tree might look like for given set of data. 
Most good methods also provide an indication of how much variation there is in this 
estimate. The most phylogenetic methods presuppose that every position of a nucle-
otide/amino acid in a sequence can change independently from the other positions. 
The gaps in alignment correspond to mutations in sequences at specific positions 
such as insertion, deletion, or genetic rearrangements, where gaps in phylogenetic 
methods were treated in various ways. Distance methods use the similarity scores 
based on scoring matrices (with gap scores). Using multiple sequence alignment 
and phylogenetic methods, we can identify the orthologous genes (genes related by 
speciation events, meaning same genes in different species) and paralogs genes 
(genes related by duplication events).

7.4.2  Methods Used in Phylogenetic Analysis

7.4.2.1  Character-Based Methods (Parsimony and Maximum Likelihood 
Method)

Parsimony analysis is the second primary way to estimate phylogenetic trees from 
aligned sequences. The maximum parsimony method generates the evolutionary 
tree that minimizes the numeral steps required to produce the pragmatic variation in 
the sequences from common ancestral sequences. For this reason, the method some-
times is referred to as the minimum-evolution method (Mount 2008). The maxi-
mum parsimony algorithm is not complicated and produces the best tree, because 
all possible trees related to a group of sequences were examined concur-
rently (Felsenstein 1988). Parsimony method is slow in computing but is an accu-
rate method for tree construction; it cannot be used for a more significant number of 
sequences with a significant variation (Fitch 1971).

Most commonly used program for maximum parsimony methods is integrated 
into PHYLIP (Plotree and Plotgram 1989; Felsenstein 1996, 2002). For analysis 
of nucleotide sequence, there are other programs available: DNAPARS (program 
carries out unrooted parsimony (analogous to Wanger trees) (Eck and Dayhoff 
1966; Kluge and Farris 1969), DNAPENNY (Dnapenny is a program that will 
find all of the most parsimonious trees implied by your data when the nucleic 
acid sequence parsimony criterion is employed) (Hendy and Penny 1982), 
DNACOMP (this program implements the compatibility method for DNA 
sequence data) (Day and Schwartz 1986), and DNAMOVE (Dnamove is an inter-
active DNA parsimony program). This program uses graphics characters that 
show the tree to best advantage on some computer systems. This program was 
developed by Wayne Maddison and David and Wayne Maddison). These pro-
grams are an integral part of PHYLIP package.
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Maximum likelihood (ML) method is the statistical method which is used to 
estimate the parameters of the statistical model (Aldrich 1997; Hald 1998). It starts 
with inscription mathematical expression known as the likelihood function of the 
sample data (Navidi et al 1991). The method is used for finding the phylogenetic 
tree, and it involves the finding of topology and branch length of the tree, which 
gives us the great probability of observing DNA or protein sequence in our data 
(Tamura and Nei 1993). This method is beneficial for widely divergent group of 
sequences because it provides choice for the user to choose a model of evolution. 
The method follows some steps: firstly, the initial phylogenetic tree was built using 
the fast optimal method. Secondly, its branch lengths are adjusted to maximize the 
likelihood of the data set for the tree topology under the desired model of evolution 
(Kuhner et al. 1988). Maximum likelihood method generally works similarly as 
maximum parsimony. However, the difference is that maximum likelihood has the 
property to evaluate tree with variation in mutation rate in different lineages and to 
use evolutionary models like Jukes-Cantor and Kimura models. The main problem 
with the ML method is that it does not consider many numbers of sequences for 
analysis as well as it is computationally complex. Beyond this, it performs well with 
high- performance computing systems and is used for the development of more 
complex evolutionary models (Schadt et al. 1998). The sequence simulation experi-
ments have shown that this method works better than all others in most cases, but it 
needs more computational time to construct the tree.

7.4.2.2  Distance-Based Methods (Neighbor-Joining and UPGMA 
Method)

The distance method works on the number of changes between each pair of 
sequences in a group of sequences to produce a phylogenetic tree of the group. The 
pair of sequences which have the smallest number of sequence changes between 
them is termed “neighbors.” The distance analysis compares two aligned sequences 
at the same time, and one by one comparison was done to construct a matrix of all 
possible sequence pairs. Due to the time of comparison, base substitutions and 
insertion/deletion events were counted and presented as a proportion of overall 
sequence length  (Tamura and Nei 1993). These final estimates of the difference 
between all possible pairs of sequences are known as pairwise distances. Two pri-
mary and widely used distance methods in phylogenetic tree construction are 
neighbor- joining (Saitou and Nei 1987) method and UPGMA (unweighted pair 
group method with arithmetic mean). The software CLUSTALW uses the neighbor- 
joining distance method as a guide to multiple sequence alignments.

Neighbor-joining (NJ) method is used for reconstructing phylogenetic tree for 
evolutionary distance data for DNA and protein sequences (Saitou and Nei 1987). 
The objective of the algorithm is to construct the topology of a tree and also the 
branch length of the final phylogenetic tree. The neighbor-joining method is suit-
able when the rate of evolution varies for separate lineages. The NJ method algo-
rithm takes input from a distance matrix specifying the distance between the pair of 
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taxa; it finds pairs of OTUs (operational taxonomic units) that minimize total branch 
length at each stage of clustering starting with a star like a tree (minimum-evolution 
tree), produced in the assumption that there is no clustering of OTUs. This  unresolved 
tree has topology that corresponds to that of a star network and iterates in multiple 
steps until the tree is completely resolved, and all branch lengths are known. This 
method is the fastest method as compared to maximum parsimony and likelihood 
methods (Kuhner and Felsenstein 1994). It was used to analyze large sequence data-
set (hundreds or thousands of taxa).

UPGMA (unweighted pair group method with arithmetic mean) method is 
merely a bottom-up approach to hierarchical clustering method, which produces a 
dendrogram from a distance matrix (Sneath and Sokal 1973). It is a statistical 
method for evaluating systematic relationships developed by Robert R. Sokal and 
Charles D.  Michener (Sokal and Michener 1958). This method corresponds to 
WPGMA (weight pair group method with arithmetic mean); the algorithm of both 
methods is similar to its unweighted variant and the UPGMA algorithm. WPGMA 
algorithm calculates the distance between clusters, as the number of taxa weights a 
simple average wherein UPGMA algorithm averages in each cluster at each step. In 
ecology, this method is most popular in classifying the sampling units. The UPGMA 
method begins with calculating the branch lengths of the most closely related 
sequences and averages the distance between this pair or sequence cluster. It contin-
ues until all sequences are included in the tree. Finally, this method predicts a posi-
tion for the root of the tree (Sattath and Tversky 1977).

7.4.2.3  Validation Methods: Bootstrap and Jackknife

Multiple sequence alignment and phylogenetic analysis are used for many pur-
poses as discussed earlier in this chapter. The determination of the phylogenetic 
relationship of the closely related sequence is straightforward as compared to 
diverse sequences. For obtaining better alignment results, users can decide what 
type of sequences they are taking for sequence alignment and phylogenetic analy-
sis, and according to the type of sequence, the above-discussed MSA methods 
were used. Bootstrap is merely a statistical method, which allows assigning mea-
sures of accuracy (Efron and Tibshirani. 1994; Efron 2003). This technique was 
developed in the early 90s, for making certain kinds of statistical inferences. It is 
mostly used in complex nonparametric estimation problems, where logical meth-
ods are not practical. Felsenstein (Efron et  al. 1996) introduced the use of the 
bootstrap in the estimation of phylogenetic trees. Many researchers criticized this 
method because it is consistently too conservative, but Bradley and team proved it 
wrong (Efron et al. 1996).

Jackknife is resampling method, which is useful for variance and bias estima-
tion; it is similar to a method like bootstrap. It was developed by Maurice Quenouille 
(1949, 1956), after that John Tukey expended the technique and named it Jackknife 
(Tukey 1958). This method was tested on phylogenies which started with the 
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Mueller and Ayala in 1982, who used Jackknife approach to estimate the variance 
of the length of a branch in UPGMA phylogeny from gene frequency data (Muller 
and Ayala 1982; Zuo et al. 2010).

7.4.3  Tools and Software Used for Tree Construction

Phylogenetic analysis programs and tools are widely available, freely or either with 
little cost. Here, some out of many, well performing online as well as offline tools 
for generation of the phylogenetic tree has been introduced. The first and most pop-
ular software is PHYLIP (phylogenetic inference package) (Felsenstein. 1981, 
1996) available from Dr. J. Felsenstein at http://evolution.genetics.washington.edu/ 
phylip.html, and PAUP (phylogenetic analysis using parsimony) available from 
Sinauer Associates, Sunderland, Massachusetts, and http://www.lms.si.edu/PAUP/.
PHYLIP is a free package of the program for inferring phylogenies. It can be 
installed on Windows, Mac, and Linux systems. It is a most widely distributed phy-
logenetic package. PAUP (phylogenetic analysis using parsimony and another 
method) is another computational phylogenetic program; it can be installed on 
Windows and Linux, UNIX systems, the latest version of this program is PAUP ver-
sion 4 and can be downloaded from (http://paup.sc.fsu.edu/). Next software is 
MrBayes, which is a software program for inferring phylogenetic parameters in a 
Bayesian statistical framework (Huelsenbeck and Ronquist 2001, 2005), and the 
current version of this software is MrBayes 3.2.3. It can be used online via (http://
www.phylogeny.fr/one_task.cgi?task_type=mrbayes&tab_index=2) or offline by 
downloading and using it via command line. RAxML (randomized axelerated maxi-
mum likelihood) is a program used for sequential and parallel maximum likelihood- 
based inference of large phylogenetic trees. It is used in post-analysis of a set of 
phylogenetic trees, sequence alignments, and evolutionary placement of short reads. 
It has initially had been derived from fastDNAml which in turn was derived from 
Joe Felsenstein’s dnaml which is part of the PHYLIP package (Stamatakis 2014), 
and the user can either download or install on the local machine, or it can be oper-
ated online by web server with GUI (graphical user interface) (https://embnet.vital-
it.ch/raxml-bb/). PHYML is an online web interface for phylogenetic tree generation 
which is fast and accurate heuristic for estimating maximum likelihood phyloge-
netic tree from DNA and protein sequences (Guindon et al. 2005); the latest version 
of this software is PHYML 3.0 (http://www.atgc-montpellier.fr/phyml/). MEGA 
(Tamura 2007; Tamura et al. 2011) (Fig. 7.10) (Kumar et al. 2016a), this software is 
very sophisticated and user-friendly for analyzing DNA and protein sequence data 
from species and populations. MEGA has perfect GUI and also available in the 
command line (http://www.megasoftware.net/); anyone can operate this software; it 
can be downloaded and installed on the local machine on any operating system or 
platform. Presently, MEGA have two latest versions: MEGA 7 and MEGA 7.1 beta 
(Kumar et al. 2016b). The beauty of this software is that the user can use different 
statistical methods for multiple sequence alignment and phylogenetic tree 
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construction. Multiple tools were integrated with this program like for phylogenetic 
tree visualization (alignment/trace editor, tree explorer, data explorer, gene duplica-
tion wizard, and many more). Except for these tools, there are numbers of other 
tools which used standard methods for phylogenetic tree analysis like TreeViewJ, 
TreeBest, Philip, FigTree, etc.

7.5  Conclusion

In this chapter, we discussed the most implemented sequence analysis methods, 
tools, and algorithms. This chapter introduces the biological sequence analysis 
through different methods including pairwise (global and local); sequence similar-
ity and scoring with dot matrix and dynamic programming; alignment scoring 
schemes through PAM and BLOSUM matrices; multiple sequence analysis with 
progressive, iterative, and profile methods; and phylogenetic analysis with character 
and distance methods along with their validations. In this context, different software 
tools and web servers were also introduced to the readers for the abovementioned 
experimental analysis purposes. This chapter enhances the knowledge of the readers 
who are interested in biological sequence analysis using diverse bioinformatics 
approaches.
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8.1  Sequence Technologies

In the early days of gene sequencing, most methods adopted location-specific 
primer extension strategies, which are not just complex but consumes lot of time, 
cost, and workforce (Maxam and Gilbert 1977). However, this scenario has dra-
matically changed with the discovery of fast and accurate DNA sequencing 
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technique based on the primer extension strategy introduced by Frederick Sanger 
(Sanger et al. 1977a, b). In 1986, the first fully automated sequence machine was 
developed by Applied Biosystems Corporation. This automated machine was 
majorly used in sequencing of human genome by Craig Venter in Human Genome 
Project (Lander et al. 2001). The recent unprecedented technological advances in 
both molecular biology and engineering fields have allowed us in further improving 
the efficiency of Sanger sequencing method. These latest Sanger sequencing 
machines offer advanced separation techniques, different visualization methods, 
and parallel sample processing strategies. The current Sanger sequencing machine 
is able to handle 96 samples in one run. While conventional, gel-based Sanger 
sequencing machines could only produce 250–500 base pairs of DNA sequence per 
reaction, the present- day Sanger sequencing machines could produce 750–1000 
base pairs of sequence from a single reaction, making sequencing a much less 
expensive than it used to be in the past (Metzker 2005). Although this gold standard 
Sanger method is still being used around the world in thousands of laboratories, 
time and resource limitations brought dramatic next-generation technologies sur-
faced to sequence whole genomes.

8.2  NGS Technologies and Applications

High efficiency and low budget made NGS technology a highly popular option 
in current-day genomics research (Metzker 2005). The sequencing technology 
has immensely improved with the course of the time, having initially started with 
a 20 megabase pair (Mbp) throughput capacity (GS20 from 454 Life Sciences) 
(Margulies et  al. 2005). Currently, Illumina HiSeq X system can produce 1.8 
terabase pair (Tbp) of sequencing data, which is a rise of 100,000 base pair fold 
in a short span of 10 years (Rhodes et al. 2014). Current NGS platforms gener-
ally use following phases to perform sequencing. (1) PCR-based amplification of 
DNA sequence libraries, (2) synthesis of DNA sequence, i.e., by adding the com-
plimentary nucleotides, and (3) parallel sequencing of the amplified DNA stands. 
NGS autoparallelization is able to generate enormous amount of nucleotide 
sequence data (from Mbp to Gbp) in one run. NGS technologies have also sig-
nificantly reduced the sequencing costs to 500 per exome and 1000 per genome 
sequencing (Le Gallo et al. 2017). Various sequencing platforms and their main 
technical features are summarized in Table 8.1. NGS technology has become a 
major molecular tool in de novo genome sequencing of prokaryotes and viruses, 
screening for genetic mutation/variants by genome sequencing or exome 
sequencing, and in exploring the regulatory mechanisms of gene expression in 
cells and tissues.
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8.3  Experimental Design and Methods of NGS Using 
Illumina

The latest illumina NGS technology uses sequence-by-synthesis (SBS) principle to 
sequence millions of copies of DNA fragments in massively parallel fashion. The 
major advantage of this technology is that it gives error-free reads and >30Q base 
call quality. Illumina NGS workflow includes three major steps like library prepara-
tion, cluster generation, and sequence by synthesis (Kruglyak et  al. 2016). (1) 
Library preparation – The initial step in library preparation is the random fragmen-
tation of DNA samples, and ligation of the DNA at 3′ and 5′ adaptor regions. To 
increase the productivity of DNA library, “tagmentation” which combines ligation 
and fragmentations reactions into a single step is followed. In the final step of library 
preparation, the PCR amplification and gel purifications are carried out on adapter- 
ligated fragments. (2) Cluster Generation – DNA library is loaded into flow cells, 
where fragments are captured in a lawn of surface bound with oligos complimentary 
to the library adapters (Fedurco et al. 2006; Turcatti et al. 2008). Each DNA frag-
ment undergoes amplification step forming a bridge when the strand is bent with the 
adjacent oligonucleotide strand and hybridize, and the polymerase extends the com-
plementary strand. The process of bridge amplification is repeated multiple times 
until clonal clusters are produced. Once, the cluster generation is complete, the 
DNA templates are ready for final step of sequencing. (3) Sequencing by SBS 
method – uses reversible terminator process, by which each base is recognized as it 
is inserted into template strands. All the nucleotides that are labeled through fluores-
cence or terminated through reverse orientation are moved in the lawns of clusters 
of the cell enabling the incorporation of first nucleotide base followed by laser 
detection of colored nucleotide.

Table 8.1 Current NGS technologies

Platform Types Base per run Read length Principle

Nanopore MinlON, 
Pro 
methlON

42 Gb
12 TB

230–300 Kb
230–300 Kb

(Minion) Real-time portable 
device for DNA/RNA sequencing 
(PromethION) Real-time 
long-read DNA/RNA sequencing

Illumina Miseq
Hiseq

300 Mb–15GB
1.6–1.8 TB

600 bp
300 bp

(Miseq) Single-run NGS analysis 
instrument, small-scale 
sequencing (Hiseq), large-scale 
genome sequencing

PacBio PacBio  
RS I I

500 MB–16 GB 60 Kb Sequence longer reads and give 
high-throughput sequencing

Life 
Technologies

Solid 5500 80–320 GB 50–2X 50 bp Genetic analysis systems are 
highly accurate, massively 
parallel next- generation 
sequencing platforms to perform 
exome and RNA sequencing
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The fluorophore is broken in the final step and reversal of terminator provides 
space to new base pair. This process repeats till the predetermined sequence length 
is generated. The result is highly accurate base-by-base sequencing that virtually 
eliminates sequence context–specific errors, even within repetitive sequence regions 
and homopolymers.

8.4  Whole Genome/Whole Exome Sequencing

The WGS and WES methods, owing to their sequencing depth and accuracy, have 
become the most reliable methods to detect the genetic sequence variations. WGS 
can determine the total DNA sequence of any organism in a single experiment. The 
major drawback of WGS is that it provides huge amount of data, whose analysis and 
interpretation is very complex (Nakagawa et al. 2015). In contrast, WES or target 
sequencing methods capture only the protein-coding gene sequence. The WES has 
become an important clinical diagnosis method to identify the disease-causative 
mutations located in protein-coding genes (Guo et al. 2018). The major focus of this 
chapter is about WES method and its data analysis (Fig. 8.1).

8.5  Whole Exome Sequencing (WES)

Whole exome sequencing (WES) method starts by capturing and sequencing the 
coding regions of the genome (Priya et  al. 2012). WES has the ability to detect 
mutations in protein-coding regions of disease-causative mutations (Bamshad et al. 
2011). The most popular exome capture/enrichments kits available in market are 
Agilent SureSelect, NimbleGen SeqCap, Illumina TruSeq, Nextera Rapid, etc. 
These kits differ in their bait density, bait (capture probe) length, target selection 
regions, and the nucleotides they target (Puritz and Lotterhos 2018) (Table 8.2).

Agilent SureSelect exome capture protocol requires 100 ng of DNA for library 
preparation (Al-Aama et al. 2017). The initial phase of DNA fragmentation is done 
by high shear homogenization technique followed by library preparation with spe-
cific sequence adapters. In the second phase, DNA is hybridized with highly spe-
cific biotinylated cRNA library baits (120mer RNA) (Chen et al. 2015). In the third 
phase, the target region is selected using magnetic streptavidin beads. The final 
phase involves amplification, clustering, and sequencing steps. The major limitation 
of WES is that its probes cannot cover all the exons listed in Consensus Coding 
Sequence project (CCDS) and Refseq (Pruitt et  al. 2009, 2012) databases. 
Furthermore, exon capturing is compromised at regions with high or low GC con-
tent being more difficult to sequence. Furthermore, WES could only capture up to 
92–95% of exons; therefore, mutations in other exons go undetected. These capture 
kits are also inefficient in determining the structural variants such as inversions and 
translocations.
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8.6  WES Data Analysis

8.6.1  Preprocessing of Raw Data Quality

Most of the Illumina platforms generate sequence reads in a binary base call (BCL) 
file format and most of the software are unable to analyze this format. Therefore, 
BCL file format is changed into a universally accepted FASTQ format. The reads 

Fig. 8.1 Steps in exome analysis
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that successfully pass “Chastity Filtering” are forwarded for further sequence analy-
sis. In the next step, Illumina adapters are eliminated, and sequences such as poly(A) 
or poly(T) are added to the reads. Trimmomatic Software, Cutadapt, or FASTXToolkit 
are often recommended for trimming the adapter sequences (Del Fabbro et  al. 
2013). Different software like NGS QC, PRINSEQ, FastQC are used to produce 
quality report of generated sequences (Schmieder and Edwards 2011). These soft-
ware provide information regarding GC content, read length, quality score distribu-
tion, and sequence duplication on each read. These tools can also be used for 
sequence trimming and QC analysis. FastQC generates quality scores for sequences 
and represents them in the form of box and graph plots.

8.6.2  Alignment with Reference Genome

A mapping tool Bowtie2 is often used to align the short reads against the reference 
genome (GRCh37 from NCBI, Feb. 2009). The Bowtie tool is considered to be the 
best tool for sequence alignment as it requires less RAM and is able to perform 
modest index alignment. Using the Ferragina and Manzini index (FM-index), 
Bowtie2 aligns reference genome with unpaired reads existing in fastq or fq formats 
(Langmead and Salzberg 2012). The output of the Bowtie2 is SAM (short alignment 
summary) format (Li et al. 2009) (Table 8.3). The SAM tool converts the SAM files 
to BAM (Binary Alignment Mapped) format, and is able to eliminate duplicate and 
false-positive variants from the WES data. The converted SAM file consists of huge 
sequence information and requires memory space. BAM refers to the binary format 
of aligned sequences that will encrypt and reduce the sequence data size. BAM files 
are usually sorted, filtered for duplicates, locally realigned, and calibrated both for 
improving the base quality and reduce false-positive variants. However, transcrip-
tomics and epigenomics data do not require these kinds of extended postprocessing 
realignment steps. In the final step, base quality recalibration utilizes the known 
variants in the database and readjusts the base quality scores to enhance the accu-
racy of variants calling.

Table 8.2 Popular exome-enrichment kits, their target coverage, and advantages

Exome capture kit
Target cover 
in Mb Advantage

Agilent SureSelect 51.1 Mb Able to sequence specific target sites
NimbleGen SeqCap 64.1 Mb Abolishes thousands of PCR reactions, enabling 

enrichment of the whole exome or regions of interest in a 
single test tube

Nextera Rapid 62.08 Mb Consists of all-in-one library preparation and enrichment
Illumina TruSeq 62.08 Mb Integrated kit consists of  DNA sample preparation, 

pre- enrichment sample pooling
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Table 8.3 Description of each descriptor from exome analysis

File name Description

FastaQ or fq Text-based format for storing both DNA and its corresponding quality scores
Example of the standard FASTQ file is shown below:
  Line 1. @EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG
  Line 2. GAAATCCATTTGTTCAACTTCAACTATCTTGCAAATCCAT 

TTGTTCAACT
  Line 3. +
  Line 4. !''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>>CCC

CCCC65
The character @ in the first line shows the sequence identifier. The biological 
sequence is shown in the second line and it is composed of four-letter 
nucleotide (A, T, G, and C). In the third line, again a sequence identifier is 
shown +. In the third line, there is only + character. Quality scores of 
corresponding sequence read are shown in the fourth line and it is coded as 
ASCII characters

SAM Sequence Alignment/Map format is a genetic format for storing large 
nucleotide sequence alignments (simple, flexible in storing and aligning the 
genomic data)

BCL Base call binary file produced by Illumina sequencing instrument. bcl2fastq 
tool merges per-cycle BCL files into FASTQ files that are the input of many 
downstream sequencing analysis tools such as aligners and de novo 
assemblers

BAM The compressed format of SAM known as compressed binary alignment 
matrix (BAM). Both files are interconvertible and help SAM tools as 
standalone software

Bed Tab-delimited text file which contains multiple lines each represent a single 
genomic region or a gene body. In this file, there are three required fields; one 
is standard BED file, which is named as chrom, chromStart, and chromEnd

gtf/gff General Transfer Format or Gene Transfer Format (GTF) and General Feature 
Format (GFF) are text-based annotation files that stores gene structure 
information of any genome

VCF VCF is a text format; it contain meta information lines, a header line, and data 
line, each containing information about position in the genome

8.6.3  Variant Calling (Primary and Secondary Variant 
Annotations)

Various open source tools like GATK, SAMTools, CRISP, Snver, Varscan etc., are 
used in variant calling step (Regier et al. 2018). Furthermore, the identified genetic 
variants will be screened with a statistical formula, i.e. Sensitivity = TP/(TP + FN), 
Precision  =  TP/(TP  +  FP), False discovery rate (FDR)  =  FP/(TP  +  FP) and 
F-Score = 2TP/(2TP + FP + FN). Whereas, TP is true positive variant found in both 
Varscan or GATK validated dataset and data determined by reference dataset; FP is 
false positive variant determined by reference dataset but not validated by Varscan 
or GATK; FN is false negative variant, known as missing variant which is validated 
by Varscan or GATK but not determined by reference dataset (Stitziel et al. 2011). 
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The secondary analysis of variant call is performed to further check the perfor-
mance and genetic priorities of the variants, different metrics such as read depth, 
genotype quality, genotype concordance, frequency estimation of variant, and cus-
tomized filtering options, which identify disease-causing variants (variant prioriti-
zation), will be analyzed.

8.7  Annotating Variants

In this step, variants are prioritized for the purpose of distinguishing between caus-
ative variants and the milieu of polymorphisms and variant calling errors present in 
a WES dataset. An approximate number of 110,000 to 130,000 variants are gener-
ated from the secondary variant calling stage. Therefore, it is important to assign 
functional information for all these variants. In a clinical genetic analysis, a muta-
tions or variants can have different annotations (Worthey et al. 2011). These variant 
annotations are majorly classified into six groups (Butkiewicz and Bush 2016):

 1. Initial variant data annotation is done by deprioritizing the variants generated 
through sequence or mapping errors.

 2. Annotate and classify (synonymous, nonsynonymous, nonsense codon, or splice 
site changes in the single nucleotide variant) the variants by their location in the 
gene.

 3. Annotate the variants to classify known clinical variants.
 4. Annotate the variants that determine the potential known functional impact of a 

variant.
 5. Annotate the unknown variants for functional predictions, by different pathoge-

netic predictions tools (variant effect predictor, SnpEff, ANNOVAR, etc.).
 6. Annotate the variants to estimate the allele frequency (1000 Genomes Project, 

ESP6500, dbSNP, ExAC) of the variant in a non-disease or disease population.

In the final step, a customized filtering process is required for determining the 
disease-causative variants from the exome or genome sequencing data. Briefly, 
these include the functional relevance of corresponding genetic variant to disease 
pathology and its mode of inheritance, etc. The specific recommendations and 
guidelines for discovering disease-causative genetic variants are reviewed else-
where (Bamshad et al. 2011).

8.8  WES Data Filtration in Mendelian/Monogenic Disease

Traditional disease gene mapping approaches (such as karyotyping, linkage analy-
sis homozygosity mapping, and copy number variation analysis) have no doubt pro-
vided deep insights into the molecular causes of different Mendelian diseases (Lee 
et al. 2014a. However, over the past few decades, these approaches are not fully able 
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to detect all forms of genomic variations, due to the fact that they require minimum 
number of patients for reaching statistical significance and consume lot of time 
(Rabbani et al. 2014). Currently, WES and targeted resequencing methods have now 
empowered researchers to perform quick and efficient analysis of single gene disor-
ders even in small families and even in single affected patient. The disease- causative 
variants are usually searched based on their minor allele frequency cut-off values 
and their major effect (missense, truncated, and splice mutations) on the function of 
query gene (Gilissen et al. 2011). The inheritance pattern of the disease is another 
feature that can be used in filtering the variants. For example, heterozygote muta-
tions in disease genes are usually seen to cause dominant disorders, whereas homo-
zygous mutations are seen to cause recessive disorders. However, compound 
heterozygote mutations in recessive genes are an exception to this rule. Ascertaining 
the lack of rare variants in query genes in large population cohorts (whether spo-
radic cases or healthy controls) can further improve our search for disease-causative 
agents (Bamshad et al. 2011).

The present-day technological developments in variant identification methods 
have enabled us to accurately diagnose disease variants and allowed their utility in 
clinical practice to initiate precision medicine concept (Lee et  al. 2014b). The 
major challenge in interpreting the effect of variants on disease phenotypes is the 
unknown and dynamic aspect of genomes. WES analysis of any individual usually 
reveals the presence of thousands of functionally important variants which may not 
be actually related to the disease causality (Macarthur 2012). Since dozens to hun-
dreds of disease variants can sometimes pass through different variant filtration 
steps described above, the prioritization of potential causal variants for functional 
biology assays should be done very carefully. Mere presence of rare variants in any 
disease gene is not enough to claim its disease causal role in individuals. Inheritance 
pattern of disease causative variants can be better understood by examining 
extended family pedigrees. This WES-variant segregation analysis can be made 
more reliable by performing linkage or homozygosity mapping methods. In cases, 
where the family data is missing, one can ascertain the absence of disease-causing 
rare variants in genome data of sporadic cases with same disease or healthy popula-
tions (Bailey- Wilson and Wilson 2011). All the above discussed distinct comple-
mentary approaches can help in the identification of candidate variants and genes, 
which can be further evaluated in functional biology assays (Teare and Santibanez 
Koref 2014).

The molecular investigation of complex diseases demands unique strategies to 
filter, analyze, and interpret the NGS data for identifying the disease-causative 
genetic mutations. From the past one decade, genome-wide association studies 
(GWAS) have become a most reliable approach that identified hundreds of common 
risk alleles for complex human diseases (Visscher et al. 2012). These studies were 
enabled by a combination of the availability of large well-characterized sample col-
lections, advances in genotyping technologies, and advances in methods for the 
analysis of the resulting genetic data. These studies have provided several biological 
insights, highlighting the role of the complement genes in age-related macular 
degeneration, of autophagy in Crohn’s disease or of specific regulatory proteins in 
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blood lipid levels, among others. Recent GWAS approaches identified 200 risk loci 
in inflammatory bowel disease (IBD) (Ye and McGovern 2016). However, very few 
have been conclusively resolved to specific functional variants. A recent study geno-
typed 94 fine mapped loci of IBD in 67,852 individuals, and concluded that 45 vari-
ants are highly enriched in immune cells associated with Crohn’s disease. Of these 
45 variants, 13 variants were enriched for protein changes, 10 for tissue specific 
epigenetic marks, and 3 for transcription factor binding sites in immune cells. The 
results of this study suggested that high-resolution fine-mapping in large samples 
can convert many GWAS discoveries into statistically convincing causal variants, 
providing a powerful substrate for experimental elucidation of disease mechanisms 
(Huang et al. 2017). However, these techniques have their own limitations. First, 
genome-wide linkage search in affected individuals only reveals the genomic region 
or locus associated with the disease and might not correctly identify the actual 
disease- causative variant. Second, GWAS relies on the common variants that 
explain only a modest fraction of the inheritance of genetic diseases. The novel and 
rare causal variants, which might account for much larger fraction of heritability, 
remain uncovered in GWAS (Korte and Farlow 2013). In contrast to this, rare vari-
ants are most likely to be found in independent genomes and they can be easily 
detected by whole genome sequencing approach. Therefore, one can argue that a 
single variant/gene does not produce a large effect and thus their biological path-
ways should be focused to determine the disease biology.

8.9  Conclusion

NGS approach refers to a wide range of genetic sequencing techniques like WGS, 
WES, and targeted sequencing. All these NGS techniques enable us to very quickly 
generate the deeper resolution of genetic sequences with high-throughput capacity. 
Illumina, is one of the widely used NGS platforms, used in analysis of billions of 
DNA fragments in one single experiment. In this method, DNA fragments are 
hybridized with oligonucleotides in the flow cell of glass slide. The experimental 
design of NGS uses paired end (PE) or single read end (SE) sequencing methods to 
accurately align, map, and quantify DNA sequences. The quality of raw data is 
assessed through various software like Trimmomatic Software, FASTXT Toolkit, 
PRINSEQ, NGS QC, FastQC, etc. WES utilizes different exome capturing kits 
which differ in target regions, probe type, probe length and number of probes, and 
required amount of input DNA. The data obtained from WES are processed through 
rigorous primary analysis in which all the generated sequences are aligned, pro-
cessed, and then variants analysis is performed to determine the cause of disease of 
lethality. In the secondary analysis, variants are annotated as per their impact of the 
genome; then they are prioritized based on the disease they cause. These genetic 
variants provide detailed information regarding the inheritance pattern and biology 
of the diseases. However, the ascertainment of disease-causative effect of genetic 
variants can only be done through functional biology assays.
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9.1  Introduction

Proteins often mediate the quintessential structure and function of cells, therefore 
maintaining the integrity of all molecular and biological functions in the entire king-
doms of life. Proteins are complex molecules which exhibit a remarkable versatility 
regarding sequential and spatial and arrangements of amino acids, which allow 
them to perform a variety of functions that are fundamental to life. Conceivably it is 
the only biological macromolecule which has undergone billions of years of evolu-
tion and amassed a variety of the functions, a few of which are still unknown to 
humanity. Through the extensive research in protein science, researchers have 
agreed to a fundamental principle that the function of proteins is dependent on its 
structural conformation. The way proteins sequence folds in three-dimensional 
(3D) conformations leads to unique structures that allow spatial arrangements of 
chemical group’s in particular 3D space. This significant placement of the chemical 
entity also allows the proteins to play essential distinct structural, regulatory, cata-
lytic, and transport functions in all the kingdom of life.

9.1.1  The Building Blocks of Protein

Amino Acids
The protein sequence consists of 20 different naturally occurring amino acids that 
serve as building blocks of proteins. Each amino acid contains a central alpha car-
bon (Cα) which is attached to an amino group (NH2), a hydrogen atom (H), and a 
carboxyl group (COOH) as shown in Fig. 9.1a. It is diverse from one another due to 
the presence of side chain which is represented by the R group attached to Cα, and 
the variations in R group impart specific chemical properties of the residue which 
governs the function of proteins. Apart from these 20 naturally occurring amino 
acids, nonnatural amino acids also occur in rare cases because of enzymatic modi-
fications after protein synthesis. The variation in side-chain R group and their pro-
pensity for contact with a solvent like water divide these amino acids into broadly 
three classes  – hydrophobic, polar, and charged. There are additional subclasses 
such as aromatic or aliphatic (Taylor 1986a) (Fig.  9.2). The hydrophobic amino 
acids have a low propensity for water, which includes lysine, isoleucine, alanine, 
proline, valine, aromatic amino acids (phenylalanine and tryptophan), and sulfur- 
containing acids (methionine and cysteine). The charged amino acid includes posi-
tively charged (+) lysine, arginine, and histidine and negatively charged (−) aspartate 
and glutamate. The polar amino acids include asparagine, glutamine, threonine, 
serine, and proline. Glycine is an exception with only single H atoms in its side 
chain. Majority of the protein molecules have a hydrophobic core not accessible to 
the solvent like water and polar amino acids in the surface in contact with the sol-
vent environment with membrane proteins as an exception. The polar surface of the 
macromolecule is covered by polar and charged amino acids, which are in contact 

B. Patel et al.



171

with the solvent environment due to their ability to form H-bonds. A protein is syn-
thesized by the linear succession of two or more peptide bonds joined end-to-end 
referring to a polypeptide. The peptide bond is formed through a condensation reac-
tion, eliminating water between the carboxyl group (COOH) of one amino acid and 
the amino group (NH2) of other amino acids (Fig. 9.1b). The polypeptide chain is 
formed by several peptide bond formations between amino acids where the amino 
group of the first and the carboxyl group of the last amino acid remain intact.

Fig. 9.1 (a) Representation of the amino acid structure. The central alpha carbon (Cα) is attached 
to an amino group (NH2), a hydrogen atom (H), a carboxyl group (COOH), and an R group which 
varies for 20 different amino acids. (b) The representation of peptide bond shown in the yellow 
box, by the elimination of a water molecule
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9.1.2  The Hierarchal Representation of Proteins

The protein molecules and their complexity in arrangements are described conven-
tionally by four levels of structure, primary, secondary, tertiary, and quaternary 
(Boyle 2005), as shown in (Fig. 9.3).

9.1.2.1  Primary Structure

The linear sequence of amino acids in the protein is generally referred to as the 
primary structure of the protein which includes all the covalent bonds between the 
amino acids. Proteins are connected as a linear polymer of 20 different amino acids 
(Rödel 1974), by forming a peptide bond between amino acids (Fig. 9.3). The poly-
peptide sequence of a protein can contain (n) number and the combination of 20 

Fig. 9.2 The 20 standard amino acids in proteins labeled with its full name. The square box indi-
cates amino acids which are grouped based on their side-chain properties like hydrophobic, polar, 
charge, sulfur-containing, and aromatic acids as shown. The variation in R group for each amino 
acid is marked with a color box. This grouping is used as a guideline but does not convey full 
complexity of side-chain properties, as it varies according to physiological conditions
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amino acids, in any order. Similar to the alphabet combinations which form mean-
ingful words and sentences in vocabulary, nature selects the combinations of differ-
ent amino acids to form polypeptide for their respective functions.

9.1.2.2  Secondary Structure

The secondary structure of a protein refers to recurring and regular spatial arrange-
ments of adjacent linear amino acids as local conformation of the polypeptide chain. 
The major secondary structural elements which are identified during protein struc-
ture research are alpha (α) helix and beta (β) sheets. Secondary structures were 
predicted by Linus Pauling, Robert Corey, and H. R. Branson before the experimen-
tal determination of structures based on the known physical limitations of the 

Fig. 9.3 Structural organization of four different protein levels: primary, secondary, tertiary, and 
quaternary
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polypeptide chain conformation (Pauling et al. 1951; Taylor n.d.). There is a consid-
erable degree of regularity in these secondary structures, particularly the psi (Φ) and 
phi (Φ) angle combinations which are repeated for the secondary structure in a 
polypeptide chain. Both helix and sheets are the only regular secondary structural 
components universally present in proteins as they satisfy the peptide bond geom-
etry constraints as well as due to the H-bond interactions between the backbone 
atoms of the amino acids in them which help them to make highly favorable and 
stable conformation, though the irregular structural components such as turns and 
loops are also observed in protein, mainly in the globular proteins which are vital to 
both structural integrity and function.

α-Helix

The α-helix was first proposed by Linus Pauling and co-workers in 1951 (1951), 
and a typical α-helical conformation is generated by curving the polypeptide back-
bone to produce a regular coil. In this helical structure, the backbone of the polypep-
tide chain is coiled around the axis of the molecule in such a way that the side-chain 
R groups of residues project toward outside from the helical backbone. The number 
of residues required to complete a single turn/coil is 3.6 in α-helix. In a single turn 
of α alpha helix, there is an H-bond interaction between each of the carbonyl oxy-
gen (n) of the backbone and the amide proton of the 4th residue (n + 4) toward the 
C-terminus. These H-bonds stabilize the helical conformation and are almost in 
parallel orientation to the long axis of the helix. The backbone of the polypeptide 
can be coiled in two directions (right or left); the helix with a rightward coil is called 
as a right-handed helix, and the other one is called as a left-handed helix. There is a 
steric hindrance in the formation of left-handed helices; the majority of the proteins 
have right-handed helices. Other types of helices have rarely been observed in the 
proteins, like the 310 helix which have three residues per turn with H-bond between 
n residue and the 3rd residue (n + 3) ahead toward the C-terminus (Taylor n.d.; 
Huggins 1943). A rare type of pi (π) helix, which is found in some polypeptides, 
possesses 4.4 residues per turn with H-bond between n residue and the 5th residue 
(n + 5) toward the C-terminus(Low and Baybutt 1952).

β-Sheets

In contrast to α-helix, where H-bond is formed between the neighboring residues 
within a single chain, β-sheets are formed by H-bond between adjacent polypeptide 
backbones in chains. These sections of adjacent polypeptide chains are known as 
β-strands. The β-sheets comprise of H-bonds formed between carbonyl oxygens and 
amide hydrogen on adjacent β-strands. Unlike the α-helix, the H-bond is almost in 
perpendicular to the extended β-strands. The β-strands are in two possible configu-
rations; it may be a parallel sheet (same N- to C-terminal direction) or antiparallel 
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sheet (opposite N- to C-terminal direction). A very rare mixed configuration also 
exists with both parallel and antiparallel sheets. In antiparallel β-sheets, a variant 
called as β-bulge is characterized by H-bond formation between two residues on 
one β-strand and one residue on the adjacent β-strand (Richardson et al. 1978; Chan 
et al. 1993).

Other Secondary Structures

Although α-helices and β-sheets are considered as major secondary structural ele-
ments in proteins, these elements are interspersed in regions of an irregular struc-
ture, also called loops or coils. These elements are not only involved in transitions 
between regular secondary structures but also possess structural significance from 
function parse and can be the location of the functional active site and usually pres-
ent at the surfaces of the proteins acting as a mediator of interactors with other 
biological molecules. Generally, residues with small side chains (R groups) are 
often found in turns such as proline, cysteine, serine, aspartate, asparagine, and 
glycine. Systematic analysis of residues in turns has revealed that amino acids have 
bulky or branched side chains occurring at very low frequencies. Different types of 
turns have been identified such as Hairpin loops (reverse turns) which often occur 
between antiparallel β-strands involving minimum number of residues (4–5) 
required to begin the next strand. An omega (ω) turn involving (6–16) residues is 
also sometimes observed. Certain structures also have extended loops, involving 
more than 16 residues and as much as 10 different combinations based on the num-
ber of residues in turns and the φ and ψ angles associated with the central 
residues.

9.1.2.3  Tertiary Structure

The tertiary structure (3°) of a protein is described as the spatial relationship formed 
as global 3D structure among all the amino acids in a polypeptide chain. The tertiary 
structure was first described by Alfred Mirsky and Linus Pauling in 1936 as a mol-
ecule consisting of one polypeptide chain which is folded into unique configuration 
throughout the molecule (Mirsky and Pauling 1936). They predicted the role of 
H-bonds in interactions of side chains of amino acids in protein structure. 
Subsequently, the determination of hemoglobin (Perutz et al. 1960) and myoglobin 
(Kendrew et al. 1958) has confirmed that other forces were also important espe-
cially noncovalent interaction which also helps in the stabilization of the structure. 
Thus, the formation of tertiary structure brings the non-neighboring amino acid 
residues in the primary structure close to each other and helping to generate a pro-
tein fold which is a determinant factor for protein functions. The tertiary structure is 
also commonly referred as protein fold which is the global conformation of all the 
secondary structures forming a compact globular molecule wherein the secondary 
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structural elements interact via electrostatic interactions, van der Waals interactions, 
hydrophobic contacts, disulfide and salt bridges, and H-bonds between non-back-
bone atoms. The efforts in protein structure prediction help to decipher how second-
ary structural elements unite in three-dimensional space to generate the tertiary 
structure.

9.1.2.4  Quaternary Structure

In contrast to the tertiary structure which describes the organization of a single poly-
peptide chain, the quaternary structure is an association of two or more indepen-
dently folded polypeptides within the protein through noncovalent interactions. 
Most proteins do not function as a monomer but rather function as multi-subunit or 
multimeric or oligomeric proteins. In certain types of proteins, the quaternary struc-
ture formation is very important from the functional perspective as they allow the 
formation of binding or catalytic sites between the interfaces of subunits which are 
not possible in case of single subunit proteins. Enzymes are known to be involved 
in allosteric regulation which frequently arises due to conformational changes 
occurring due to ligand/substrate binding in oligomeric proteins. In quaternary 
structures, the subunits may be identical resulting in a homomeric protein or may be 
different resulting in a heteromeric association of proteins. They were first observed 
by The Svedberg in 1926 using analytical ultracentrifuge to determine the molecu-
lar weights of proteins which resulted in the separation of multi-subunit proteins 
(Svedberg and Fåhraeus 1926). The stabilization forces and interactions in the qua-
ternary structure are of the same types as observed in the secondary and tertiary 
structure stabilization. The surface regions of monomer unit involved in the subunit 
interactions comprise with nonpolar side-chain residues and residues capable of 
forming the H-bond and disulfide bonds.

9.2  Protein Structure Predictions

In the past, Anfinsen demonstrated that the unfolded proteins can fold back into 
their native conformation only by their primary structure or amino acid sequence 
(Anfinsen et al. 1961). It has laid the foundation of computational methods of pre-
dicting tertiary structures from the primary sequence. The ultimate goal of protein 
structure prediction is to elucidate a structure from its primary sequence, with accu-
racy comparable to results achieved experimentally using X-ray crystallography 
and NMR. To achieve the thermodynamically stable fold better than other confor-
mations, the protein must evolve the folding by optimizing the interactions within 
and between residues and satisfy all the spatial constraints between the atoms of a 
peptide bond. Though we do have an understanding of the general nature of inter- 
and intramolecular interactions that determine the protein fold, it is yet challenging 
to ascertain the structures of protein from basic physiochemical principles.
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Why do we need to predict the structures of protein? The answer lies in the fact 
that the protein structural attributes lead to biological functions, and computational 
prediction methods are the only way and convenient in all contexts where experi-
mental techniques fail. Many proteins are too large for NMR or lack the propensity 
to form diffraction quality crystals for X-ray diffraction, so in such cases computa-
tional method for structure prediction is the only approach. The 3D structure predic-
tion from its primary structure is the much-debated area of structural bioinformatics. 
Despite the development of recent enormous algorithms and the computational 
methods for protein structure prediction, a comprehensive solution for accurate pre-
diction of protein folding still remains elusive. Many structural bioinformatics 
researchers have introduced several methods and algorithms to solve this problem, 
but each method has both advantages and disadvantages. Globally, a competition 
has been set up to evaluate the performance of several structure prediction tools/
softwares using blind test on several experimentally predetermined structures of 
proteins. This competition was started in 1995 as Critical Assessment of Techniques 
for Protein Structure Prediction (CASP) which provides a global benchmark for this 
exhaustive computational purpose (Moult et al. 2018).

Decades of research have provided insights into the various ways to accurately 
predict the 3D structures of proteins like template-based methods (homology mod-
eling), fold recognition (also known as threading), a new fold method, and de novo 
(ab initio) methods of structure prediction. The homology modeling methods are 
also known as comparative modeling, and prediction of the query structure is based 
on close homologs (>25%) of experimentally known structure deposited in the 
Protein Data Bank (PDB) public domain. The fold recognition method is generally 
used when a structure with similar folds is available, but lacking a close relative for 
homology modeling. The new fold method is employed when no structure with the 
same folding pattern is known, and it requires a priori or knowledge-based methods 
for prediction. In ab initio methods for structure prediction as the name suggests, 
prediction is performed from scratch using the amino acid information only. With 
the introduction of advanced algorithms and availability of experimental solved 3D 
structures, many software/tools are continuously being developed combining differ-
ent classical prediction methods described above.

9.2.1  Homology Modeling

This comparative modeling method is based on the fact that when the amino acid 
sequence of the query structure is homologous to that of the one or more experimen-
tally known structures, the resulting structural fold will also be similar. This rela-
tionship was identified first in 1986 by Chothia and Lesk where they have concluded 
that despite years of evolution, the structure is more stable and less susceptible to 
changes than the associated sequence and thus similar sequences as well as distantly 
related sequences to certain extent folds into a similar fold (Chothia and Lesk 1986). 
If the percentage identity between the query sequence and the known structures falls 
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in the “Safe” region, two sequences may practically have an identical fold. As a rule 
of thumb, this “Safe” zone should have at least 30–50% identical amino acids in an 
optimal sequence alignment, and the resulting homology model can be sufficiently 
used for other application. The homology model output is generated simply by 
copying aligned regions of the polypeptide from the template/homologous struc-
ture, by altering the side chains wherever necessary, and by mutating those residues 
that differ between sequence alignments. The final model which is created by 
homology modeling contains enough information about the 3D arrangement of the 
essential and sufficient residues for the design of subsequent experiments, like 
structure-based drug discovery and site-directed mutagenesis.

There are numerous tools for generating a homology model, and most of them 
have consensus steps involved in the generation of structure which are as follows:

 1. Template identification
 2. Initial sequence alignment
 3. Alignment correction
 4. Backbone generation
 5. Loop modeling and optimization
 6. Side-chain modeling and optimization
 7. Overall model optimization
 8. Model validation

Briefly, the process starts with sequence similarity search for the target sequence 
and the known structure of a protein using BLAST (Altschul et al. 1990) or PSI- 
BLAST (Altschul et al. 1997) or fold recognition (Jones et al. 1999) and PDB struc-
ture database (www.rcsb.org). In a case where percentage identity is often low, one 
or more possible template is selected, and further alignment correction is performed. 
After initial alignment, alignment correction is undertaken wherein the low- 
percentage regions are more carefully corrected using multiple sequence alignment 
to generate position-specific scoring matrices also known as profiles (Taylor 1986b). 
For such alignment refinement and correction, generally preferred tools are 
MUSCLE (Edgar 2004) and T-COFFEE (Notredame et al. 2000). These corrections 
and refinements are very crucial to predict the best quality model. Further backbone 
generation is performed where the coordinates of aligned residues in the template 
and model are simply copied to the initial backbone model. It is often found that the 
experimentally determined structures contain errors because of weak electron den-
sity map and one can use structure validation tool like PDBREPORT (http://www.
cmbi.ru.nl/gv/pdbreport/) for manual inspection. The Swiss Model server (Biasini 
et al. 2014) (http://swissmodel.expasy.org/) uses multiple templates to create opti-
mum backbone to compensate the missing residues which are not aligned in single 
template selection. Swiss Model, Phyre, and MODELLER are currently widely 
used as free homology modeling tools. Modeler is most widely used homology 
modeling tool which does not create a single backbone; instead, it uses the align-
ment to derive restraints such as H-bonds, torsion angles to build the model satisfy-
ing the restraints (Šali and Blundell 1993).
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The next step is the loop modeling of the insertion or deletion in the alignment 
which is not previously modeled, and the changes are outside the regular secondary 
structural elements. Two widely used approaches are the knowledge-based 
(Michalsky et  al. 2003) and the energy-based (Xiang et  al. 2002). In the first 
approach, a search in the PDB is performed for known similar loops with matching 
the endpoints between the loops and simply copying the conformation of loops. In 
the second approach, the sampling of random loop conformation is performed with 
energy minimization using the Monte Carlo or molecular dynamics to find maxi-
mum energy-minimized loop conformation. Further, side-chain modeling is carried 
out where the conserved residues from the template are copied because the structur-
ally similar proteins have an identical torsion angle (psi-angle) while comparing the 
side-chain conformations. This task is generally knowledge-based where the rota-
mer libraries are built from high-resolution X-ray structures by collecting the 
stretches of three-seven residues with the query amino acid in the center. After the 
initial model building, the model optimization takes place where the incorrectly 
predicted rotamers are optimized by restraining the atom position and applying a 
few steps of energy minimization using molecular simulations to correct the errors. 
The final step is model validation where the model is assessed for any kind of errors 
accumulated during previous steps. In model validation, the method checks for the 
correct bond angles and lengths; however, one should be cautious as this validation 
cannot judge whether the model is correctly folded or not. Table 9.1 summarizes the 
widely used academically free tools and server for homology modeling.

Table 9.1 Summary of widely used academically free tools and server for homology modeling

Program Web address Availability Method

SWISS-
MODEL

http://swissmodel.expasy.org/ Free Rigid-body 
assembly

MODELLER https://salilab.org/modeller/ Academically 
freeb

Spatial restraints

Phyre2 http://www.sbg.bio.ic.ac.uk/phyre2/ Free Profile-based 
alignment

HHpred https://toolkit.tuebingen.mpg.de/#/
tools/hhpred

Free Profile-based HMM

RaptorX http://raptorx.uchicago.edu/ Free Rigid-body 
assembly

Protein Model 
Portal

https://www.proteinmodelportal.org/ Free Metaservera

ROBETTA http://robetta.bakerlab.org/ Academically 
freeb

Metaservera

FoldX http://foldxsuite.crg.eu/ Academically 
freeb

Rigid-body 
assembly

ESyPred3D https://www.unamur.be/sciences/
biologie/urbm/bioinfo/esypred/

Free Alignment using 
Neural Network

aMetaservers use existing different servers for final prediction
bAcademically free requires registration using academic email
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9.2.2  Fold Recognition Method

Despite more than a decade of research and understanding the protein folding pro-
cess, still, the current-day knowledge is not sufficient enough to predict protein 
structures just based on the amino acid sequence. It is well-known fact that the 
protein which does not have detectable sequence similarity still adopts a similar fold 
and function. Thus, the fold recognition approach has been developed to examine 
which protein models have a similar fold of known structures. Unlike homology 
modeling, where target protein structures are modeled based on homologous tem-
plate deposited in the Protein Data Bank (PDB), the fold recognition methods work 
by utilizing statistical knowledge of the relationship between structures deposited in 
the PDB and the query protein sequence.

These methods have made possible to find a suitable fold of an unknown query 
protein when the alignment is around the “twilight zone” and with no homology to 
known 3D structures. The two widely used methods in fold recognition area are 3D 
profile-based method and threading. The 3D profile-based method works based on 
the physicochemical attributes of residues of the query protein, which must fit 
within the environment in the 3D structure. The parameters which relate to the suit-
able environment are the buried cavities in protein which are inaccessible to solvent, 
polar atoms (O and N) covering the side-chain area, and the local secondary struc-
ture (Bowie et al. 1991). In threading approach, the residues in the sequence are 
fitted into the backbone coordinates of known structures by comparison in 3D space 
(Jones et al. 1992). The term “threading” is used since the prediction is made by 
placing and aligning each amino acid in the query sequence with respect to template 
structure and later evaluating how well the target fits the template. The threading 
approach relies on a basic fact: that there is a relatively small amount of different 
known folds (approximately 1400) and that most of the newly submitted structures 
in the database have similar structural folds already deposited in the PDB.

The key difference between the homology modeling and fold recognition method 
is that the homology modeling uses only sequence homology for prediction by 
treating the matched template in an alignment as a sequence, while in threading 
structure and sequence in the matching template is used for prediction. In the 
absence of significant sequence homology, protein threading still makes a predic-
tion based only on the structural information making the threading method more 
effective than the previous one where the sequence match is below “Safe” zone. 
One of the significant limitations of the threading method is that the correct predic-
tion is only feasible when an appropriate fold match is present in the library of 
known structures. The list of widely used freely available prediction methods which 
uses the threading method is mentioned in Table 9.2.

The basic steps of threading approach are as follows:

• The generation of structure template database: A library is constructed for differ-
ent protein folds from protein structure databases such as PDB, SCOP, and 
CATH.
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• The designing of the scoring function: The fitness between the query sequence 
and the templates is measured with scoring functions and knowledge-based rela-
tionships between the sequence and structures.

• Optimal fitting into the library: The target sequence is then favorably fitted to 
each library fold with considerations of insertions and deletions in the loop 
regions.

• Threading alignment: The alignment of the query sequence with each template 
structure is generated by optimizing the scoring function. The energy of scoring 
function of each possible fit is computed by summing the pairwise interactions 
and energy solvation mainly by two approaches: one by using dynamic program-
ming with a frozen paring environment where interaction partners are chosen 
from template protein followed by iteration and other by using Monte Carlo 
method.

• Final threading prediction: The most optimal threading match from the library of 
folds is chosen based on ascending order of total energy and choosing a template 
with the lowest energy folds. The final structure model is constructed by placing 
the backbone atoms of each residue in the query sequence at the aligned back-
bone spatial coordinates of the selected structural template.

Table 9.2 List of threading software and servers widely used and freely available

Program Web address Availability Method

I-TASSER https://zhanglab.ccmb.med.
umich.edu/I-TASSER/

Academically 
freea

Iterative threading 
assembly refinement

HHpred https://toolkit.tuebingen.mpg.
de/#/tools/hhpred

Free Profile-based HMM

pGenTHREADER http://bioinf.cs.ucl.ac.uk/
psipred?pgenthreader=1

Free Profile-based fold 
recognition

GenTHREADER http://bioinf.cs.ucl.ac.uk/
psipred?genthreader=1

Free Rapid fold recognition

IntFOLD http://www.reading.ac.uk/
bioinf/IntFOLD

Free Multiple-template 
modeling approach using 
sequence-structure 
alignment

Phyre2 http://www.sbg.bio.ic.ac.uk/
phyre2/

Free Profile-based alignment 
and secondary structure 
matching

Sparks X http://sparks-lab.org/yueyang/
server/SPARKS-X/

Free Probabilistic-based 
sequence-to-structure 
matching

FUGUE2 http://mizuguchilab.org/
fugue/

Free Sequence-structure 
compatibility based on 
databases of structural 
profiles

aAcademically free requires registration using academic email
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9.2.3  Ab Initio Modeling Method

The ab initio method is also known as de novo prediction that attempts to predict the 
3D structure based only on the primary sequence such as amino acid composition. 
All the information essential for a polypeptide to fold in its native state is already 
embedded in the protein’s amino acid sequence as demonstrated by Anfinsen in 
1961 (Anfinsen et al. 1961). Generally, this method is used as a last resort in protein 
structure prediction when the structural information homolog is missing.

The ab initio method predicts native conformations by computing the most 
favorable energy conformations. Only few computational programs rely on this 
method because it requires massive computational power and also due to the limited 
knowledge available about protein folding patterns. The key areas involved in de 
novo prediction are accurate energy, scoring functions, and efficient sampling con-
formation spaces. The Zhang lab’s QUARK (Xu and Zhang 2013) and ROSETTA 
servers (Kim et al. 2004) are the two best prediction methods which make use of ab 
initio methods combined with other methods, to predict tertiary structure of pro-
teins. The programs and servers which use ab initio method for structure prediction 
are summarized in Table 9.3.

During the process of ab initio prediction, several sets of candidate structures, 
also called as decoys, are computed. Furthermore, native-like conformations are 
then selected from these sets of decoys based on the theory that native protein fold 
has the lowest entropy and free energy. Several programs which are successful in ab 
initio prediction generally use knowledge-based methods for prediction of confor-
mation with the lowest free energy followed by fold prediction and threading. A 
major limitation of this method is a requirement of huge computational power. To 
solve this issue to a limited extent, Rosetta@home (https://boinc.bakerlab.org/) 
forum was created which combines individual’s home computer idle time for dis-
tributed calculations. Another method to overcome the requirement of high compu-
tational facilities is involving the use of Monte Carlo models (Jayachandran et al. 
2006) by refining computer simulations and also by the use of coarse-grained mod-
eling (Kmiecik et al. 2016).

Table 9.3 List of ab initio-based prediction servers widely used and freely available

Program Web address Availability Method

EVfold http://evfold.org/evfold-web/
evfold.do

Free Evolutionary couplings calculated 
from correlated mutations in a 
protein family

FALCON http://protein.ict.ac.cn/
FALCON/

Free Position-specific hidden Markov 
model

QUARK http://bioinf.cs.ucl.ac.uk/
psipred?genthreader=1

Free Replica-exchange Monte Carlo 
simulation

ROBETTA http://robetta.bakerlab.org Free Ab initio fragment assembly with 
Ginzu domain prediction
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9.3  Protein Structure Validations

Proteins are the workhorse of all the biological processes in an organism, and the 
key to their functions is the 3D structure and dynamics of the protein. To get a better 
understanding of these functions, we need correct native fold prediction about the 
protein model. Therefore to increase the reliability, the protein structure prediction 
should be followed by quality check and assessment. One needs to select the best 
model from an ensemble of predicted models i.e., either from different modeling 
methods/servers or based on prediction from different template alignments and 
structures. The best way is to generate different models using the different methods 
from the available modeling servers and have a model quality assessment to choose 
the top stereochemically validated model. The primary reason for not relying on 
only one prediction method or one template is due to suboptimal methods for target- 
template alignments, low-resolution template structure, and structural inaccuracies 
introduced by modeling program. The main objective of model verification pro-
grams is to detect unreliable segments in the model by evaluating their 

Table 9.4 List of widely used programs for protein structure model evaluation and quality check

Program Web address Availability Method

PROCHECK https://www.ebi.ac.uk/
thornton-srv/software/
PROCHECK/

Free Checks stereochemical
Parameters including the 
Ramachandran plot

ERRAT http://services.mbi.ucla.
edu/ERRAT/

Free Analyzes the statistics of nonbonded 
interactions and plots the value of 
the error function versus a 9-residue 
sliding window position

WHAT_
CHECK

http://servicesn.mbi.ucla.
edu/WHATCHECK/

Free Checks stereochemical
Parameters

Verify3D http://servicesn.mbi.ucla.
edu/Verify3D/

Free Check 3D model with its own 
residues based on its location and 
environment (alpha, beta, loop, 
polar, nonpolar, etc.)

ProSA web https://prosa.services.
came.sbg.ac.at/prosa.php

Free Check 3D models of proteins 
structures for potential errors

WHAT_IF http://swift.cmbi.ru.nl/
whatif/

Free Protein model assessment especially 
for a point mutation

MolProbity http://molprobity.biochem.
duke.edu/

Free Validation using all-atom contact 
analysis and geometrical criteria for 
phi/psi, sidechain rotamer, and 
C-beta deviation

The Protein 
Model Portal

https://www.
proteinmodelportal.
org/?pid=quality_
estimation

Free Metaservera

SAVES http://servicesn.mbi.ucla.
edu/SAVES/

Free Metaservera

aMetaserver uses existing different programs for evaluation
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stereochemical and geometrical quality so that the models are suitable for subse-
quent applications. Different packages and online servers are available for modeling 
quality assessment that is listed in Table 9.4. A number of methods and parameters 
to be checked in model quality estimation are listed below:

9.3.1  Ramachandran Plot

In a peptide bond, the likely conformations for a polypeptide chain are quite 
restricted due to the limitation of rotational freedom at φ (Cα−N) and ψ (Cα−C) 
angles by steric hindrance between peptide backbone and the side chains of the resi-
dues. Ramachandran plot maps the entire conformational space for a polypeptide 
(plot of ψ vs φ) and illustrates the allowed and disallowed residues in this conforma-
tional space (Ramachandran et al. 1963). One can check the Ramachandran statis-
tics to assess the allowed and disallowed residues in the protein model and select 
those folds in which more than 90% of residues fall in the allowable region. As a 
rule of thumb, >90% allowed region criteria should be followed, or at least the resi-
dues critical for the function of protein or residues in the active site should be in the 
allowed region. As it is the most powerful check for protein stereochemical check 
for protein structure, an attempt should be made to energy minimize the structure 
and solve the error regions so that it follows the Ramachandran statistics.

9.3.2  CASP: Benchmarking Validation Test

Which server/methods generate the best possible native-like conformation struc-
ture? It is a very difficult question to answer as the complexity of protein modeling 
lies in the method used to predict the correct folding of the sequence from the pri-
mary amino acid residues. Any protein prediction server whether it is based on 
homology modeling, threading, or de novo prediction method has advantages along 
with certain disadvantages. As a rule of thumb, the combination of multiple meth-
ods also called as “metaserver” approach is more reliable prediction than individual 
methods. An ideal way to select the best prediction server is to model the protein 
structure using the top 3–5 best performing algorithm from the list of an indepen-
dent validation benchmark such as CASP, a Critical Assessment of Protein Structure 
Prediction, followed by model quality assessment and validation. CASP is a bien-
nial competition for benchmarking all the available servers/programs introduced by 
Moult in 1995 (Moult et al. 2018). The algorithm is trained on databases that already 
contained the structures so there are chances that a predicted output would be 
biased; to solve this issue, CASP was introduced where the experimentalist will 
solve the structure but will not deposit in a public forum and keep it undisclosed to 
the prediction servers. Once the prediction is made for these sequences, it will be 
compared with the solved structure to see how correctly the model is predicted.
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9.3.3  Swiss Model Validation Server

Swiss model output page describes the model quality in two ways: GMQE (Global 
Model Quality Estimation) and QMEAN. The GMQE is a model quality approxi-
mation which is based upon the target-template alignment and the template identi-
fication method. The GMQE score as shown ((1) in Fig. 9.4) should be between 0 
and 1, where the number close to 1 indicates the higher reliability of the predicted 
model. The QMEAN score (Benkert et al. 2008) is an estimator based on geometri-
cal properties providing both global (entire structure) and local (per residue-wise) 
score. The QMEAN scores are transformed into Z-score whose value indicates what 
one would expect from the experimentally determined X-ray structures. This 
QMEAN Z-score ((2) in Fig. 9.4) is an estimation of the “degree of nativeness” of 
the structural features detected in the model on a global scale. QMEAN Z-score 
around 0 indicates good agreement between the model structure and the known 
experimental structures of related attributes. The prediction where the Z-score is <= 
−4.0 indicates low-quality model. There are four individual Z-scores ((3) in Fig. 9.4) 
which compare the interaction potential between all atoms, Cβ atoms only, solva-
tion, and torsion angle, where positive values indicate model score higher than 
experimental structure average and vice versa. Besides these, a local quality plot 
((4) in Fig.  9.4) is also generated per residue (mentioned on the x-axis) and its 
anticipated similarity to the native structure (mentioned on the y-axis). The residues 
showing score below 0.6 are estimated to be of low quality. The comparison plot 
((5) in Fig. 9.4) shows model quality scores of individual models with respect to 

Fig. 9.4 The sample evaluation report of the SWISS-MODEL server for the protein structure. 
Different scoring parameters are indicated by the number in a green circle. 1 GMQE (global model 
quality estimation); 2 QMEAN Z-score; 3 four individual Z-scores; 4 per-residue local quality 
plot; 5 comparison plot with respect to experimentally determined structures. (Source: https://
swissmodel.expasy.org/docs/help)
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scores of experimental structures of similar size. In the plot, the x-axis shows the 
length of the protein, and the normalized QMEAN score is represented on the y-axis 
where every dot signifies one experimental protein structure. The experimental 
structures are reported in dots by black color (Z-score between 0 and 1), gray color 
(Z-score between 1 and 2), and light gray color with further Z-scores from the mean. 
Red star represents the actual predicted model.

9.3.4  MODELLER Evaluation Criteria

Currently, the most extensively used package for protein structure prediction is 
MODELLER (Šali and Blundell 1993). It is often called as a comparative model 
building package as it also builds the model based on the homologous template. If 
the sequence identity between the template and query sequence is >30%, 
MODELLER almost predicts the model with higher accuracy. Modeler has an inter-
nal evaluation for self-consistency checks to check that whether model satisfies the 
restraints or not. The model stereochemistry like bonds, dihedral angles, bond 
angles, and nonbonded atom-atom distances is assessed using PROCHECK and 
WHATCHECK. The other way to check whether the model is predicted accurately 
or not is to compare the PROSAII Z-score of the template and model structure, and 
as the Z-score is a compatibility between the sequence and its structure, the model 
Z-score should agree with the template Z-score on which the alignment is com-
puted. One can also check the “pseudo energy” profile of a model generated by 
PROSAII, as the error in the model is reflected by the peak in the energy profile in 
that region. Another way of evaluating the model prediction is by assessing the 
DOPE (discrete optimized protein energy) score (Shen and Sali 2006). DOPE is 
integrated into MODELLER package, and it assesses the energy model computed 
through iterations by the satisfaction of spatial restraints. The prediction includes 
generation of many decoys while predicting the native-like model, and DOPE score 
helps in identifying the native-like models from hundreds of decoys, i.e., the lower 
the score, the higher the reliability. It is generally used to check the quality of the 
global model, but alternatively, it can also be used to generate residue-wise energy 
profile of the predicted model which can be helpful to spot the error region in the 
model structure.

9.3.5  I-TASSER Model Validation

Apart from the tertiary structure prediction output, I-TASSER also gives secondary 
structure prediction results where the residue-wise prediction (confidence score) is 
between 1 and 9 and higher prediction indicates higher confidence. The output also 
gives predictions for solvent accessibility score for each residue between 0 (buried 
residue) and 9 (highly exposed residue). The server also gives top 10 threading 
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templates used to construct the template alignment with normalized Z-score where 
the normalized Z-score > 1 indicates a good alignment. The final prediction gives 
the top 5 model structure a confidence score called as C-score. The C-score is criti-
cal for estimating the quality of the model which is calculated based on the conse-
quence of threading template alignments and convergence parameter. The C-score 
is generally in the range of [−5,2], where higher values signify a model with high 
reliability and vice versa. Besides these, each model also has RMSD and the 
TM-score, where RMSD is an average deviation of all residue pairs in two struc-
tures, i.e., local error, and the TM-score is the score for structural similarity between 
two structures. The lesser the RMSD, the better the model with lesser spatial devia-
tion as compared to template structure and vice versa. While judging the model 
based on TM-score, one should select a model which TM-score is >0.5 and not 
consider a model with TM-score <0.17 which indicates a random similarity.

Generally, while performing structure prediction using I-TASSER, it is observed 
that models have bad Ramachandran statistics as compared to other homology pre-
diction programs. The simple explanation for this is I-TASSER builds a model by 
reassembling the structural fragments from multiple templates so the model some-
times has more energetically unfavorable regions in the Ramachandran plot. To 
overcome this problem, one can do post-prediction refinement using simulations, 
including solvent, or use online servers like FG-MD (Zhang et al. 2011) (https://
zhanglab.ccmb.med.umich.edu/FG-MD/) or ModRefiner (Xu and Zhang 2011) 
(https://zhanglab.ccmb.med.umich.edu/ModRefiner/) to improve overall 
Ramachandran statistics. The user should keep this in mind that the local structure 
improvement comes with a cost of deviation in global topology.

9.4  Protein Structure Superimpositions and Deviation

It is true that sequences of similar proteins tend to have similar fold and in turn simi-
lar biological functions. It is also often found that two proteins with no detectable 
sequence similarity also have a similar fold and may function similarly. In such a 
case, it is necessary to devise a method where we can compare protein structures to 
elucidate common regions. Thus, programs were developed which perform 
structure- based multiple sequence alignment to apprehend the influence of similar/
dissimilar regions in the structure. But one should keep in mind the differences 
between structure superposition and structure alignment. Structure superposition 
refers to the examination of two or more structures to evaluate for similarities in 
their 3D structure, while structural alignment refers to identifying equivalences 
between amino acid sequences based on 3D structure. In structure superposition, 
the C-alpha positions are the anchor points between structure A and B, and a trans-
formation technique is performed which minimized the distance between these 
aligned residues. The solution to this approach is to produce the lowest value of 
root-mean-square deviation (RMSD) between A and B.
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The root-mean-square deviation (RMSD) is calculated by the squared difference 
between two sets of atomic coordinates after superposition (Gu and Bourne 2009). 
In the process of comparing two structures, the coordinates may not be suitable for 
comparison functions like the translation and rotation which are needed to be 
applied to one of the two structures to minimize the RMSD, and this method is 
called as superposition. The RMSD values are also used in model quality evaluation 
where lower RMSD values indicate a lesser deviation between template and model 
structure, and eventually it signifies that the model has more nearer native-like fold 
and also helps in identifying the dissimilarity between them.

Why Is Structure Comparison and Alignment Important?
• To help with the assignment of fold classes and topology of newly determined 

protein structures/models.
• Structure comparison of fold and function of a known protein with an unknown 

protein can help to elucidate the function of the unknown protein.
• In the era of next-generation sequencing of genomes, a structural comparison 

can be helpful to determine the fold and function of protein where no prior 
knowledge of the biological function exists.

• Structural alignments can help in identifying the distant sequence relationships 
in a spatial arrangement not available from sequence-based alignment alone and 
which can be used in protein modeling and engineering.

• Useful in clustering the PDB dataset based on RMSD values so the target is 
compared only to a subset of all the PDB entries and thus makes the algorithm 
faster without compromising the accuracy.

Few of the programs and algorithms which are currently widely used for the 
structure comparison and alignment are mentioned in Table 9.5. 

Table 9.5 List of commonly used servers/programs for structural superposition and alignment

Program Web address Availability Method

SuperPose http://wishart.biology.
ualberta.ca/SuperPose/

Free Protein superposition using modified 
quaternion approach

VAST https://www.ncbi.nlm.
nih.gov/Structure/
VAST

Free Identify similar protein 3D structures by 
purely geometric criteria

TM-align https://zhanglab.ccmb.
med.umich.edu/
TM-align/

Free Optimized residue-to-residue alignment 
based on structural similarity using dynamic 
programming iterations

MATRAS http://strcomp.protein.
osaka-u.ac.jp/matras/

Free Markov transition model of structure 
evolution for homology detection

FATCAT http://fatcat.burnham.
org/

Free Flexible structure alignment by chaining 
aligned fragment pairs allowing twists

BioSuper http://wwww-ablab.
ucsd.edu/biosuper

Free Gaussian-weighted RMSD Superposition of 
proteins for flexible loops and hinged domain
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9.4.1  DALI

DALI algorithm was developed by Holm and Sander in 1995, which uses a distance 
matrix for representation of each structure to be compared (Holm and Sander 1995). 
The structure is exemplified as a 2D array of distances between all C-alpha atoms. 
DALI has an underlying database called as FSSP which comprises the cataloging of 
3D protein folds based on an all-against-all comparison of structures deposited in 
the PDB. The DALI server (http://ekhidna2.biocenter.helsinki.fi/dali/) accepts the 
coordinates of the query protein and outputs the similarity score, % of identical 
amino acids in alignment, and RMSD of Cα atoms in superimposition. It also gives 
Z-scores, which are the standard deviations from the average score from the 
database.

9.4.2  Combinatorial Extension (CE)

Shindyalov and Bourne have developed the combinatorial extension (CE) algorithm 
which use a distance approach for structure comparison of C-alpha distance matri-
ces for every combination of eight residues in a polypeptide chain (Shindyalov and 
Bourne 1998). Then a combinatorial extension is made of an alignment path rather 
than using Monte Carlo optimization or dynamic programming. This path is gener-
ated based on aligned fragment pairs which are constructed on local geometry rather 
than the orientation of secondary structures and topology. It takes 3D coordinates as 
input, and the output lists its structural neighbors with Z-score, RMSD, % identity 
along with the length of the aligned sequence and number of gaps.

9.4.3  SSAP

Sequential structure alignment program (SSAP) was developed by Taylor and 
Orengo that uses double dynamic programming based on atom-to-atom vectors in 
structure space using the Cβ atom of each residue. It takes the rotameric state of 
each residue along with the location of the backbone (Taylor and Orengo 1989). A 
series of optimal local alignments are generated based on the matrix using dynamic 
programming which is then summed into a “summary” matrix to which dynamic 
programming is again applied to determine the final structural alignment. The out-
put gives raw SSAP scores derived from the comparison and is standardized against 
known comparisons in the CATH (Classification, Architecture, Topology, and 
Homology) database (Sillitoe et al. 2015). A significant alignment has a raw SSAP 
score above 70–80% when 60% residues of larger protein are included in the 
alignment.
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9.5  Protein Structure Modeling and Its Applications 
and Case Studies

Decades of intense research in protein biochemistry and folding process along with 
the parallel development of high-end computational resources have made the protein 
prediction possible with high accuracy through the computational modeling. The 
protein structure determination via the experimental techniques including NMR and 
X-ray (Fig. 9.5) has became a routine practice. A major application of protein struc-
ture determination is in the pharmaceutical segment for drug designing and discov-
ery as well as in molecular biology research and biotechnology (Hillisch et al. 2004; 
Kopp and Schwede 2004). Homology modeling has also been used in functional 
annotations of newly sequenced genes (Hermann et al. 2007). Commercially, the 
homology model has also shown to have a successful application in characterizing 
the substrate specificity using docking studies for important enzymes with the indus-
trial application and reengineering these enzymes to accept other substrates (Blikstad 
et al. 2014). The increasing accuracy of protein prediction and availability of high-
resolution X-ray structure as templates have driven the homology modeling applica-
tions in drug designing as well as in designing of site-directed mutational studies. 
Many successful examples of homology modeling applications have been recently 
published and cannot be mentioned here in depth, for example, in antigen-antibody 
designing (Kuroda et al. 2012), modeling and simulations of ion channels (Maffeo 
et  al. 2012), cystic fibrosis transmembrane conductance regulator (Dalton et  al. 
2012), inhibitor designing of DNA methyltransferases (Medina-Franco and Caulfield 
2011), lead designing in epigenetic targets (Heinke et al. 2011; Andreoli and Del Rio 
2015), and many more.

Fig. 9.5 PDB Statistics: Growth of released structures per year. The number of structures released 
per year is shown in the orange box and total number available is shown with a blue box. (Source: 
https://www.rcsb.org/stats/)
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9.6  Tutorials

9.6.1  Homology Modeling of Using SWISS-MODEL 
Workspace

In this section, we will model the structure of a protein’s amino acid sequence using 
one of its homologs as a template. We will then compare the generated homology 
model to the actual experimental structure. For this example, we will take insulin 
protein from Homo sapiens (UniProt ID: P01308).

Steps
 1. Go to https://swissmodel.expasy.org/ and click the “Start Modelling” or select 

“myWorkspace” from the navigation bar (Modelling → myWorkspace) to start 
a new modeling project ((1) in Fig. 9.6).

 2. One can either provide the UniProtID (P01308) of the target sequence or paste 
the protein sequence in FASTA format or in the input form ((2) in Fig. 9.6). 
Alternatively, different input formats can be selected from the panel using the 
drop-down menu ((3) in Fig. 9.6). Instead of the protein sequence, you can also 
input the target-template alignment directly generated from any sequence 
homology program like BLAST.  For more advanced options, the user can 
directly input the Usertemplate. A project title will be automatically assigned 
by default, and the user can give the email address where they want the results 
to be mailed ((4) in Fig. 9.6).

 3. The next step is to look for existing template structures; click on the “Search for 
Templates” button ((5) in Fig. 9.6). It will search for available homologs tem-

Fig. 9.6 The sequence submission module of SWISS-MODEL for homology modeling
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plate structure on which the query model can be built. The user can see the 
status of the job once the search is started.

Note: If you use “Build Model” option ((6) in Fig. 9.6), an automatic pipe-
line will be run for both the template search and the template selection steps. 
The automated mode selects templates that maximize the expected quality of 
the model but doesn’t guarantee the selection of the best template for modeling. 
The template selection entirely depends on the intended application of a model, 
e.g., if the goal is to construct a model of a protein in complex with a ligand/
substrate rather than selecting its apo form as a template, a template with simi-
lar ligand should be preferred.

 4. After the template search is completed, the output page contains a table show-
ing the list of identified templates (50 templates in the current example ((1) in 
Fig. 9.7) which are ranked according to the quality of resulting models. The 
panel ((2) in Fig. 9.7) mentions different tabs: templates, quaternary structures 
(if one is interested in modeling oligomeric state), sequence similarity 
 (homology between the query and selected template), and alignment of selected 
templates with the query sequence.

 5. For each template, the following information is provided ((3) in Fig. 9.7):

• A checkbox to select and visualize the template in the 3D panel ((4) in 
Fig. 9.7).

• The SMTL ID of the template, the protein name of the template.
• The coverage of the query sequence (blue shade refers to higher sequence 

identity).

Fig. 9.7 Template identification results for input query sequence in SWISS-MODEL
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• The GMQE (global model quality estimation) and QSQE (quaternary struc-
ture quality estimation).

• The target-template sequence identity.
• The ligands present in the experimental structure (if any).

 6. The next step is to select suitable templates for modeling based on different 
parameters as mentioned above and the intention and applications of the model. 
By clicking on the checkbox, various template structures can be visualized and 
compared to structure superposition in the 3D viewer. One should rank them 
according to their coverage of the target sequence, resolution of experimentally 
determined structures, etc. in our example, we can observe that most of the 
templates share a high sequence identity (>90%). Let’s select the four top- 
ranking templates for further modeling. After selection, one can see the super-
imposed structures of these templates ((4) in Fig. 9.7).

 7. After the template(s) selection, click the “Build Model” button ((5) in Fig. 9.7) 
to run the final modeling task.

 8. In the results page, for, respectively, model generated based on the selected 
templates (five models in the current example ((1) in Fig. 9.8)), the following 
information as shown in panel ((2) in Fig. 9.8) is provided:

• A file containing the model coordinates (x,y,z).
• The oligomeric state of the model and the modeled ligands (if any).
• QMEAN model quality estimation results.
• The target-template sequence alignment, the sequence identity to the target, 

and the target sequence coverage.

Fig. 9.8 Final output of modeling results and evaluation reports in SWISS-MODEL
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 9. The different models and their quality can be evaluated by different local esti-
mates and QMEAN per-residue plot as shown in panel ((3, 4) in Fig. 9.8). The 
detail evaluation of model is mention above in Sect. 9.3.3 under Swiss model 
validation server.

 10. The models are displayed interactively using the 3D viewer ((5) in Fig. 9.8). 
Based on the above knowledge and results you obtained, one can assess whether 
the homology model can contemplate a reliable model or not. If not, choose a 
different strategy other than mentioned above and compare the different results.

9.6.2  Model Quality Estimation Using SAVES Metaserver 
and Refinement of the Model

In this section, we will use the SAVES Metaserver to estimate the model quality and 
refine the structure using MODREFINER until we get the better model which satis-
fies the parameters. We will use the above-generated model for this task. Download 
the model 1 from the above SWISS-MODEL output and save as “pdb” format.

Steps:

 1. Go to SAVES version 5 homepage (https://servicesn.mbi.ucla.edu/SAVES/). 
SAVES is a Metaserver which combines different programs/servers available for 
reliable prediction of quality of generated homology model ((1) in Fig. 9.9).

 2. Upload the model pdb file generated through Swiss-Model prediction ((2) in 
Fig. 9.9). Check the relevant server to be used for quality assessment by clicking 
the checkbox ((3) in Fig. 9.9). In this example, we will select Verify_3D, ERRAT, 
PROVE, PROCHECK, and WHATCHECK. Submit the run by clicking on “Run 
SAVES” button ((4) in Fig. 9.9).

 3. After the job is finished, all the results will be displayed in the tab-wise sections, 
and detailed results from each server can be viewed by clicking on them ((5) in 
Fig. 9.9). A graph displaying the expected (red color) and observed (blue color) 
amino acids frequency in the model computed from the total amino acids distri-
bution through entire structures deposited in PDB ((6) in Fig. 9.9).

 4. One can analyze the output for each server by clicking them. The detailed output 
of every program can be found in each of them (Fig.  9.10). In our model 
 evaluation, the Verify_3D shows as PASS ((1) in Fig. 9.10), but the ERRAT qual-
ity factor is not reliable ((2) in Fig. 9.10), PROVE output is showing error ((3) in 
Fig. 9.10), and PROCHECK ((4) in Fig. 9.10) shows unreliable Ramachandran 
statistics with 72% in allowed and 4.3% in disallowed region ((5) in Fig. 9.10) 
along with few errors in WHATCHECK output ((6) in Fig. 9.10). One can find 
the reliable values to be achieved for successful modeling in details for each of 
the server by individually assessing the complete results.

 5. The next step is to either change the template along with different strategies or 
do the modeling again or refine the existing model to improve the overall score 
and quality factor of modeling.
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 6. In the current example, we will use ModRefiner server for refining the homology 
model to achieve the global minima near-native-like conformation. Open 
ModRefiner server (https://zhanglab.ccmb.med.umich.edu/ModRefiner/). 
Upload the homology model ((1) in Fig. 9.11) or paste the content of pdb file in 
the text box. One can also upload the C-alpha backbone as a reference structure 
for guided refinement which can be useful if one has a near identical crystal 

Fig. 9.9 Model evaluation results of SAVES Metaserver

Fig. 9.10 Detail evaluation output of different programs in SAVES
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structure available in PDB ((2) in Fig. 9.11). Click the “run ModRefiner” button 
to submit the job. After the completion of the job, a refined model will be gener-
ated with the RMSD and TM-score in reference to the initial pre-refined model.

 7. Once the refinement is complete, repeat the steps from 2 to 4 and assess whether 
the overall quality of the model has improved or not. In our current case, we can 
clearly see the differences in SAVES output for pre-refined ((3) in Fig. 9.11) and 
post-refined ((4) in Fig.  9.11) models. The ERRAT quality factor has been 
improved from 56 to 61, PROVE outputs the model as Pass, and Ramachandran 
statistics have been improved from 72% in allowed and 4.3% in the disallowed 
region to 84% in allowed and 1.4% in the disallowed region. This task can be 
repeated for several cycles until the overall quality of models stops improving 
without compromising the overall conformation of the model.

 8. Alternatively, the model can also be subjected to molecular dynamics simula-
tions for certain timescale until the RMSD values achieve stability. This method 
also takes solvent and its environment in consideration while refining the model. 
GROMACS or NAMD package can be used for such refinement, but it requires 
an advanced stage of computer understanding and is beyond the scope of current 
section.

9.7  Conclusions

For several years, the protein structure prediction remained to be a challenging goal 
for structural biologists. Recent technological advances in high-throughput genome 
sequencing and experimental techniques used in structure determination along with 
the  powerful computational resources have changed this perspective. Nowadays, 
protein prediction has become a routine bioinformatic practice and applied in vari-
ous subsequent biological research experiments. Improved algorithms and a better 

Fig. 9.11 Model refinement server ModRefiner submission page. 1 SAVES output for pre-refined 
model and 2 SAVES output for refined model
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understanding of physiochemical properties for protein stability and folding have 
increased the accuracy of predictions and enabled the researchers to generate a 
rational hypothesis for further experiments. Homology modeling has become a sig-
nificant tool used for structure prediction, while progress in fold recognition and 
threading for detection of distant homologs for sequence alignments have made 
structure prediction easier than as thought earlier. The progress in ab initio structure 
prediction method is relatively slow compared to other methods, but a remarkable 
achievement made in recent years has enabled us to predict structure for small pro-
teins accurately. Profile-based sequence searches, use of 3D structures in alignment, 
improved loop and side-chain conformation prediction followed by structure valida-
tion, and quality assessment have improved overall accuracy in the process.

Despite several years of understanding and development, researchers still do not 
have complete knowledge of how a protein folds based on its primary sequence. We 
still lack the knowledge of sequence/structure/function relationships. For sequence 
alignment in or below “twilight zone,” finding distant homolog still needs improve-
ment because completely unrelated sequences with no detectable homology still 
fold into similar conformations. Though we are nearer in the prediction of native- 
like conformation with lower-energy minima, still for certain novel sequences, 
experimental determination of structure remains the only solution. The ideal way is 
to predict the structure using different methods, refine until one gets native-like low- 
energy conformations, and validate those using different approaches. It is highly 
advisable that while predicting a structure, one should give more emphasis in find-
ing optimal template recognition and hybrid method involving homology modeling 
and threading followed by simulations to have an accurate prediction which can be 
further utilized in subsequent experiments. Apart from the remarkable development 
of algorithms and prediction methods by various groups, more targets and refine-
ment tools along with benchmarking competitions like CASP should be encour-
aged. The overall community helps to define where efforts should be made to move 
the field forward progressively. Further advancement in both computational biology 
and physical sciences will further help in the understanding of biological processes 
and benefit of human mankind.
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10.1  Introduction to Protein Structure Annotations

Proteins hold a unique position in structural bioinformatics. In fact, more so than 
other biological macromolecules such as DNA or RNA, their structure is directly and 
profoundly linked to their function. Their cavities, protuberances and their overall 
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shapes determine with what and how they will interact and, therefore, the roles 
assumed in the hosting organism. Unfortunately, the complexity, wide variability and 
ultimately the sheer number of diverse structures present in nature make the charac-
terisation of proteins extremely expensive and complex. For this reason, considerable 
effort has been spent on predicting protein structures by computational means, either 
directly or in the form of abstractions that simplify the prediction while still retaining 
structural information. These abstractions, or protein structure annotations, may be 
one-dimensional when they can be represented by a string or a sequence of numbers, 
typically of the same length as the protein’s primary structure (the sequence of its 
amino acids). This is the case, for instance, of secondary structure (SS) or solvent 
accessibility (SA). Another important class of abstractions is composed of two-
dimensional properties, that is, features of pairs of amino acids (AA) or SS, such as 
contact and distance maps, disulphide bonds or pairings of strands into β-sheets.

Machine learning (ML) techniques have been extensively used in bioinformatics 
and in structural bioinformatics in particular. The abundance of freely available 
data – such as the Protein Data Bank (PDB) (Berman et al. 2000) and the Universal 
Protein Resource (The UniProt Consortium 2016) – and their complexity make pro-
teins an ideal domain where to apply the most recent and sophisticated ML tech-
niques, such as deep learning (LeCun et al. 2015). Nonetheless, there are pitfalls to 
avoid and best practices to follow to correctly train and test any ML method on 
protein sequences (Walsh et al. 2016).

Deep learning is a collection of methods and techniques to efficiently train 
nuanced parametric models such as neural networks (NN) with multiple hidden lay-
ers (Schmidhuber 2015). These layers contain hierarchical representations of the 
features of interest extracted from the input. NN are the de facto standard ML 
method to predict protein structure annotations. They have a central role at the two 
most important academic assessments of protein structure predictors: CASP and 
CAMEO (Haas et  al. n.d.). Thus, they are widely used to predict protein one- 
dimensional and two-dimensional structural abstractions.

A typical predictor of protein structure annotations will first look for evolution-
ary information (PSI-BLAST is commonly used for this task), then will encode the 
information found, following this will run a ML method (usually a NN) on the 
encoded information and finally will process the output into a human-readable for-
mat. Differently from ab initio methods, template-based predictors directly exploit 
structural information of resolved proteins alongside evolutionary information 
(Pollastri et al. 2007).

Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST) 
(Altschul et al. 1997) is the de facto standard algorithm, released with the BLAST+ 
suite, to address protein alignment. In particular, it is commonly used in substitution 
of BLAST, whenever remote homologues have relevance. PSI-BLAST executes a 
BLAST call to find similar proteins in a given database, and then it either uses the 
resulting multiple sequence alignment (MSA) to construct a position-specific score 
matrix (PSSM) or outputs the MSA itself. The entire process is usually iterated few 
times using the last PSSM as query for the next iteration – in order to improve the 
PSSM and, thus, maximise the sensitivity of the method. The trade-off for increasing 
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the number of iterations, and the sensitivity of the method, is a higher likelihood of 
corrupting the PSSM, including false-positive queries into it (Schäffer et al. 2001). 
For this reason, and the nature itself of the tool, it is fundamental to consider PSI-
BLAST as a predicting tool and not as an exact algorithm (Jones and Swindells 2002).

HHblits (Remmert et al. 2012) is a 2011 algorithm to address protein alignment. 
It focuses on fast iterations and high precision and recall. It obtains these gains by 
adopting Hidden Markov Models (HMM) to represent both query and database 
sequences. The overall approach resembles the PSI-BLAST one – except that HMM 
rather than PSSM are the central entity. In fact, the heuristic algorithm looks for 
similar proteins in the HMM database at first. Then, it either uses the resulting 
HMM to improve the HMM query, and iterate, or outputs the MSA found with the 
last HMM. The same trade-off between number of iterations and likelihood of cor-
rupting the HMM stands for HHblits as it does for PSI-BLAST.

In this chapter we review the main abstractions of protein structures, namely, SS, 
SA, torsional angles (TA) and distance/contact maps. For each of them, we describe 
an array of ML algorithms that have been used for their characterisation, point to a 
set of public tools available to the research community, including some that have 
been developed in our laboratory, and try to outline the state of the art in their pre-
diction. These structure annotations are complementary with one another as they 
look at proteins from different views. That said, some annotations received far more 
interest from the bioinformatics community than others, for reasons such as sim-
plicity or the intrinsic nature of the feature itself. We focus more on these well- 
assessed annotations, keeping in mind that the main function of protein structure 
annotations is to facilitate the understanding of the very core of any protein: the 
three-dimensional structure.

The PSSM built by PSI-BLAST, or the HMM built by HHblits, or the encoded 
MSA built by either PSI-BLAST or HHblits are generally used as inputs to a protein 
feature predictor. Different releases of the database used to find evolutionary infor-
mation may lead to different outcomes. Normally, a computer able to look for evo-
lutionary information (thus, execute PSI-BLAST or HHblits calls successfully) has 
the right hardware to run the standalones here presented with no problem.

All the predictors described below offer a web server, are free for academic use and 
provide licenses for commercial users at the time of writing. The web servers described 
return a result (prediction) in anything between a few minutes and a few hours.

10.2  Secondary Structure

SS prediction is one of the great historical challenges in bioinformatics (Rost 2001; 
Yang et al. 2016). Its history started in 1951, when Pauling and Corey predicted for 
the first time the existence of what were later discovered to be the two most common 
SS conformations: α-helix and β-sheet (Pauling and Corey 1951). Notably, the very 
first high-resolution protein structure was determined only in 1958 (and led to a 
Nobel Prize to Kendrew and Perutz) (Kendrew et al. 1960; Perutz et al. 1960). These 
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early successes motivated the first generation of protein predictors, which were able 
to extrapolate statistical propensities of single AA (or residue) towards certain con-
formations (Chou and Fasman 1974). The slow but steady growth of available data 
and more insights on protein structure led to the second generation of predictors, 
which expanded the input to segments of adjacent residues (3–51 AA) to gather 
more useful information, and assessed many available theoretical algorithms on SS 
(Rost 2001). In the 1990s, more available computational power and data allowed the 
development and implementation of more advanced algorithms, able to look for and 
take advantage of evolutionary information (Yang et al. 2016). Thus, the third gen-
eration of SS predictors was the first able to predict at better than 70% accuracy 
(Rost and Sander 1993), efficiently exploit PSI-BLAST (Jones 1999) and imple-
ment deep NN (Baldi et al. 1999). In 2002, SS was removed from CASP since the 
few and relatively short targets assessed at the venue were not considered statisti-
cally sufficient to evaluate the mature methods available (Aloy et al. 2003).

The intrinsic nature of SS, being an intermediate structural representation 
between primary and tertiary structure, makes it a strategic and fundamental one- 
dimensional protein feature. It is often adopted as intermediate step towards more 
complex and informative features (i.e. contact maps (Jones et al. 2015; Wang et al. 
2017; Vullo et  al. 2006), the recognition of protein folds (Yang et  al. 2011) and 
protein tertiary structure (Baú et al. 2006)). In other words, a high-quality SS pre-
diction can greatly help to understand the nature of a protein and lead to a better 
prediction of its structure. For example, SS regularities characterise the proteins in 
a common fold (Murzin et al. 1995).

The theoretical limit of SS prediction is usually set at 88–90% accuracy per AA 
(Yang et al. 2016). This limit is mainly derived from the disagreement on how to 
assign SS and from the intrinsic dynamic nature of protein structure – i.e. the pro-
tein structure changes according to the fluid in which the protein is immersed. In 
particular, define secondary structure of proteins (DSSP) (Kabsch and Sander 
1983), the gold standard algorithm to assign SS given the atomic-resolution coordi-
nates of the protein, agrees with the PDB descriptions around 90.8% of the time 
(Martin et al. 2005). While DSSP aims to provide an unambiguous and physically 
meaningful assignment, the PDB represents the ground truth in structural pro-
teomics (Berman et al. 2000).

All the SS predictors described in this chapter exploit different architectures of 
NN to perform their predictions. The list of AA composing the protein of interest is 
the only input required. The SS is often classified in three states – i.e. helices, sheets 
and coils – although the DSSP identifies a total of eight different classes. Because 
of the higher difficulty of the task, compounded also by the rare occurrence of cer-
tain classes – i.e. π-helix and β-bridge – only three of the predictors presented here 
(Porter5, RaptorX-Property and SSpro) can predict in both three states and eight 
states. The DSSP classifications of SS in eight states are the following:

• G = three-turn helix (310-helix), minimum length three residues
• H = four-turn helix (α-helix), minimum length four residues
• I = five-turn helix (π-helix), minimum length five residues
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• T = hydrogen bonded turn (three, four or five turn)
• E = extended strand (in β-sheet conformation), minimum length two residues
• B = residue in isolated β-bridge (single pair formation)
• S = bend (the only non-hydrogen-bond based assignment)
• C = coil (anything not in the above conformations)

When SS is classified in three states, the first three (G, H, I) are generally consid-
ered helices, E and B are classified as strands and anything else as coils. SS predic-
tion is evaluated looking at the rate of correctly classified residues (per class) – i.e. 
Q3 or Q8 for three- or eight-state prediction, respectively – or at the segment over-
lap score (SOV), i.e. the overlap between the predicted and the real segments of SS 
(Zemla et al. 1999), for a more biological viewpoint. The best performing ab initio 
SS predictors are able to predict three-state SS close to 85% Q3 accuracy and SOV 
score.

Table 10.1 gathers name, web server and notes on special features of every SS 
predictor presented in this chapter. A standalone – i.e. downloadable version that 
can run on a local machine – is currently available for all of them.

10.2.1  Jpred

Jpred is an SS predictor which was initially released in 1998 (Cuff et  al. 1998). 
Jpred4 (Drozdetskiy et  al. 2015), the last available version, has been released in 
2015 to update HMMer (Finn et al. 2011) and the internal algorithm (a NN). Jpred4 
relies on both PSI-BLAST and HMMer to gather evolutionary information, generat-
ing a PSSM and a HMM, respectively. It then predicts SS in three states, along with 
SA and coiled-coil regions. Jpred4 aims to be easily usable also from smartphones 
and tablets. FAQ and tutorials are available on its website (Fig. 10.1).

Table 10.1 Name, web server and notes on special features of every SS predictor presented in this 
chapter

Name Web server Notes

Jpred (Drozdetskiy 
et al. 2015)

http://www.compbio.dundee.ac.
uk/jpred4/

HHMer, MSA as input, API

PSIPRED (Jones 
1999)

http://bioinf.cs.ucl.ac.uk/psipred/ BLAST, cloud version, MSA as input

Porter (Pollastri and 
McLysaght 2005)

http://distilldeep.ucd.ie/porter/ three- or eight-states, HHblits or 
PSI-BLAST, light standalone

RaptorX-Property 
(Wang et al. 2016)

http://raptorx.uchicago.edu/
StructurePropertyPred/predict/

three- or eight-states, no PSI-BLAST 
(only HHblits), option for no 
evolutionary information

SPIDER3 
(Heffernan et al. 
2017)

http://sparks-lab.org/server/
SPIDER3/

Numpy or Tensorflow, HHblits and 
PSI-BLAST

SSpro (Magnan and 
Baldi 2014)

http://scratch.proteomics.ics.uci.
edu/

three- or eight-states, BLAST, 
template-based
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The web server of Jpred4 is available at http://www.compbio.dundee.ac.uk/
jpred4/. It requires a protein sequence in either FASTA or RAW format. Using the 
advanced options, it is also possible to submit multiple sequences (up to 200) or 
MSA as files. An email address and a JobID can be optionally provided. When a 
single sequence is given, Jpred4 looks for similar protein sequences in the PDB 
(Berman et al. 2000) and lists them when found. Checking a box, it is possible to skip 
this step and force an ab initio prediction. Jpred4 relies on a version of UniRef90 
(The UniProt Consortium 2016) released in July 2014, while the PDB is regularly 
updated.

The result page is automatically shown and offers a graphical summary of the 
prediction along with links to possible views of the result in HTML (simple or full), 
PDF and Jalview (Waterhouse et al. 2009) (in-browser or not). It is also possible to 
get an archive of all the files generated or navigate through them in the browser. If 
an email address is submitted, a link to the result page and a summary containing 
the query, predicted SS and confidence per AA will be sent. The full result, made 
available as HTML or PDF, lists the ID of similar sequences used at prediction time, 
the final and intermediate predictions for SS, the prediction of coiled-coil regions, 
the prediction of SA with three different thresholds (0, 5 and 25% exposure) and the 
reliability of such predictions.

Fig. 10.1 The homepage of Jpred4. The input sequence is the only requirement while more 
options are made available
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Jpred4 is not released as standalone, but it is possible to submit, monitor and 
retrieve a prediction using the command line software available at http://www.
compbio.dundee.ac.uk/jpred4/api.shtml. A second package of scripts is made avail-
able at the same address to facilitate the submission, monitoring and retrieving of 
multiple protein sequences. More instructions and examples on how to use the com-
mand line software are presented on the same page.

10.2.2  PSIPRED

PSIPRED is a high-quality SS predictor freely available since 1999 (Jones 1999). Its 
last version (v4.01) has been released in 2016. PSIPRED exploits the PSSM of the 
protein to generate its prediction by neural networks. Like SSpro (described below), 
it recommends the implementation of the legacy BLAST package (abandoned in 
2011) to collect evolutionary information. The BLAST+ package (the active devel-
opment of BLAST) fixes multiple bugs and provides improvements and new fea-
tures, but scales by 10 and rounds the PSSM, and thus provides less informative 
outputs for PSIPRED. BLAST+ is experimentally supported by PSIPRED (Fig. 10.2).

The web server of PSIPRED (Buchan et al. 2010), called the PSIPRED Protein 
Sequence Analysis Workbench, runs a 2012 release of PSIPRED (v3.3) and can be 
found at http://bioinf.cs.ucl.ac.uk/psipred/. A single sequence (or its MSA) and a 
short identifier are expected as input. Optionally, an email address can be inserted to 
receive a confirmation email (with link to the result) when the prediction is ready. 
Several prediction methods (for other protein features) can be chosen. The default 
choice (picking only PSIPRED) is sufficient to predict the SS.  If the submission 
proceeds successfully, a courtesy page will be shown until the result is ready.

The result page, organised in tabs, shows the list of AA composing the analysed 
protein (the query sequence) and the predicted SS class (using different colours). 
From the same tab, it is possible to select the full query sequence, or a subsequence, 
to pass it to one of the predictor methods available on the PSIPRED Workbench. 
The predicted SS is presented in the tab called PSIPRED using a diagram. In the 
same diagram, the confidence of each prediction and the query sequence are 
included. The Downloads tab, the last one, allows the download of the information 
in the diagram as text or PDF or postscript or of all three versions.

The last release of PSIPRED is typically available as a standalone at http://bioin-
fadmin.cs.ucl.ac.uk/downloads/psipred/. Once the standalone has been downloaded 
and extracted, it is sufficient to follow the instructions in the README to perform 
predictions on any machine. The output will be generated in text format only as 
horizontal or vertical format. The latter will contain also the individual confidence 
per helix, strand and coil. Notably, the results obtained from the standalone may 
very well differ from those obtained from the PSIPRED Workbench. The latter does 
not implement the last PSIPRED release, at the time of writing.

In 2013, a preliminary package (v0.4) has been released to run PSIPRED on 
Apache Hadoop. Hadoop is an open-source software to facilitate distributed pro-
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cessing in computer clusters. Although this PSIPRED package is intended as an 
alpha build, instructions to install it on Hadoop and on AWS (the cloud service of 
Amazon) are provided. This package does not contain any standalone of 
PSIPRED. Thus, it is an interface to run the selected PSIPRED release on Hadoop. 
It can be downloaded at http://bioinfadmin.cs.ucl.ac.uk/downloads/hadoop/.

10.2.3  Porter

Porter is a high-quality SS predictor which has been developed starting in 2005 
(Pollastri and McLysaght 2005) and improved since then (Pollastri et  al. 2007; 
Mirabello and Pollastri 2013). Porter is built on carefully tuned and trained ensem-
bles of cascaded bidirectional recurrent neural networks (Baldi et al. 1999). It is 
typically built on very large datasets, which are released as well. Its last release (v5) 
is available as web server and standalone (Torrisi et  al. 2018). Differently from 
PSIPRED, it implements BLAST+ to gather evolutionary information. To maximise 
the gain obtained from evolutionary information, it also adopts HHblits alongside 
PSI-BLAST. Porter5 is one of the three SS predictors presented here that are able to 
predict both three-state and eight-state SS (Fig. 10.3).

The web server can be found at http://distilldeep.ucd.ie/porter/. The basic inter-
face asks for protein sequences (in FASTA format) and for an optional email 
address. Up to 64 KB of protein sequences can be submitted at the same time, which 
approximately corresponds to 200 average proteins. Differently from other SS web 
servers, there is no limit of total submissions. The confirmation page will contain a 

Fig. 10.2 A typical result page of PSIPRED web server. All the AA are listed and coloured accord-
ing to the predicted SS class
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summary of the job, the server load (how many jobs are to be processed) and the 
URL to the result page. It is automatically refreshed every minute.

The detailed result page will show the query, the SS prediction and the individual 
confidence. In other words, the same information shown by the PSIPRED Workbench 
is given in text format. The time to serve the job is shown as well. Optionally, if an 
email address has been inserted, all the information in the result page is sent by 
email. Thus, it can potentially be retrieved at any time. It is possible to predict SS 
and other protein structure annotations (one-dimensional or not) submitting one job 
at http://distillf.ucd.ie/distill/.

The very light standalone of Porter5 (7 MB) is available at http://distilldeep.ucd.
ie/porter/. It is sufficient to extract the archive on any computer with python3, 
HHblits and PSI-BLAST to start predicting any SS. Using the parameter – fast, it is 
possible to avoid PSI-BLAST and perform faster but generally slightly less accurate 
predictions. When the prediction in three states and eight states completes 
 successfully, it is saved in two different files. Each file shows the query, the pre-
dicted SS and the individual confidence per class. The datasets adopted for training 
and testing purposes are available at the same address.

Fig. 10.3 The input form of Porter5. Around 200 proteins can be submitted at once in FASTA 
format
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10.2.4  RaptorX-Property

RaptorX-Property, released in 2016, is a collection of methods to predict one- 
dimensional protein annotations (Wang et al. 2016). Namely, SS, SA and disorder 
regions are predicted from the same suite. The SS is predicted in both three states 
and eight states, as with Porter5 and SSpro. At the cost of lower accuracy, evolution-
ary information can be avoided to perform faster predictions. Its last release substi-
tutes PSI-BLAST with HHblits to get faster protein profiles (Fig. 10.4).

The web server of RaptorX-Property is available at http://raptorx.uchicago.edu/
StructurePropertyPred/predict/. Jobname and email address are recommended but 
not required. Query sequences can be uploaded directly from one’s machine. 
Otherwise, up to 100 protein sequences (in FASTA format) can be passed at the 
same time through the input form. The system allows up to 500 pending (sequence) 
predictions at any time. The current server load, shown in the sidebar, tells the pend-
ing jobs to complete.

Once the job has been submitted, a courtesy page will provide the URL to the 
result page, how many pending jobs are ahead and the JobID. Less priority is given 
to intensive users. The jobs submitted in the previous 60 days are retrievable click-
ing on “My Jobs”. Once the prediction is performed, the result page will show a 
summary of it using coloured text. At the bottom of the page, the same information 
is organised in tabs, one tab per feature predicted (SS in three- and eight-state, SA 
and disorder). The individual confidence is provided in the tabs. All this information 
is sent by email (in txt and rtf format), if an email address has been provided. 
Otherwise, it can be downloaded clicking the specific button.

The last standalone of RaptorX-Property (v1.01) can be downloaded at http://
raptorx.uchicago.edu/download/. Once it has been extracted, it is sufficient to read 
and follow the instruction in README to predict SS, SA and disorder regions on 
one’s own machine. As in the web server, it is possible to use or not sequence pro-
files and the results are saved in txt and rtf format. The disk space required is rela-
tively considerable, 347  MB at the time of writing, almost 50 times the storage 
required by Porter5.

Fig. 10.4 A partial view of the result page of RaptorX-Property. Each bar in the charts represents 
the individual confidence
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10.2.5  SPIDER3

SPIDER3 is the second version of a recent SS predictor first released in 2015 
(Heffernan et al. 2015). Its last release is composed by 2 NN, the first of which 
predicts SS while the second predicts backbone angles, contact numbers and SA 
(Heffernan et al. 2017). It internally represents each AA using seven representative 
physiochemical properties (Fauchère et al. 1988). Like Porter5, it implements both 
HHblits and PSI-BLAST to look for more evolutionary information. SPIDER3 is 
also described in sections Solvent Accessibility and Torsion Angles, respectively 
(Fig. 10.5).

The web server of SPIDER3 is available at http://sparks-lab.org/server/
SPIDER3/. An email address is required when multiple sequences are submitted or 
to receive a summary of the prediction. Otherwise, the query sequence is sufficient 
to submit the job and obtain an URL to the result page. The web server allows up to 
100 protein sequences (in FASTA format) at a time and accepts optional JobID. To 
prevent duplicates, it is possible to visualise the queue of jobs submitted from one’s 
IP address. The result page presents the query sequence and the predicted SS and 

Fig. 10.5 An output example of SPIDER3
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SA, in a simple and colour-coded text format. In the same page, it is possible to 
download a summary (containing the same information) or an archive with the four 
features predicted and the individual confidence for SS. There is also a link to a 
temporary directory containing all the files created during the prediction, including 
the HMM and the PSSM.

The standalone of SPIDER3, and the dataset used to train and test it, can be 
downloaded at http://sparks-lab.org/server/SPIDER3/. The main prerequisite is to 
install a python library of choice between Numpy and Tensorflow r0.11 (an older 
version). As for Porter5, it is then sufficient to install HHblits and PSI-BLAST to 
perform SS prediction on one’s machine. The outcome of SS, SA, torque angles and 
contact number prediction will be saved in different columns of just one file. The 
storage required is 101  MB and 117 MB, respectively, without considering the 
library of choice.

10.2.6  SSpro

SSpro is a historical SS predictor developed starting in 1999 (Baldi et  al. 1999; 
Magnan and Baldi 2014). Similarly to PSIPRED, it implements the BLAST pack-
age rather than the more recent BLAST+. The last version of SSpro (v5) has been 
released in 2014, together with ACCpro (see Solvent Accessibility, ACCpro), and 
performs template-based SS predictions (Magnan and Baldi 2014). More specifi-
cally, it exploits PSI-BLAST to look for homologues at both sequence and structure 
level (Pollastri et al. 2007). In other words, SSpro v5 has an additional final step in 
which it looks for similar proteins in the PDB (Fig. 10.6).

SSpro is available at http://scratch.proteomics.ics.uci.edu/ as part of the 
SCRATCH protein predictor (Cheng et al. 2005). SS is among the several (one- 
dimensional or not) protein features predictable on SCRATCH. Like Porter5 and 
RaptorX-Property, it is possible to predict both three-state (SSpro) and eight-state 
(SSpro8) predictions. Once SSpro or SSpro8 is selected, an email is required and 
optionally a JobID. Only one protein (of up to 1500 residues) can be submitted at 
a time. There are five total slots in the job queue per user. Once ready, the result 
of the prediction will be sent by email only. It will contain the JobID, the query 
sequence, the predicted SS (in three or eight classes) and a link to the explanation 
of the output format.

The standalone of the last SSpro (v5.2) and ACCpro (described in section 
Solvent Accessibility) compose the SCRATCH suite of 1D predictors available at 
http://download.igb.uci.edu/. SCRATCH v1.1 is released with all the prerequi-
sites to set up and run SSpro. The BLAST package and the databases with both 
sequences and structural information are included. Thus, the amount of disk space 
needed to download and extract SCRATCH v1.1 is considerable (5.7 GB, 97 MB 
without databases).
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10.3  Solvent Accessibility

SA describes the degree of accessibility of a residue to the solvent surrounding the 
protein. SA is second only to SS among extensively studied and predicted one- 
dimensional protein structure annotations. The effort invested into SA predictors 
has been significant from the early 1990s and highly motivated from the successes 
obtained developing the third generation of SS predictors (Pascarella et al. 1998). In 
fact, similarly to SS prediction but sometimes with some time delay, mathematical 
and statistical methods (Cornette et al. 1987), NN (Rost and Sander 1994), evolu-
tionary information (Holbrook et al. 1990) and deep NN (Pollastri et al. 2002) have 
been increasingly put to work to predict SA.

Although SA is less conserved than SS in homologous sequences (Rost and 
Sander 1994), it is typically adopted in parallel with SS in many pipelines towards 
more complex protein structure annotations such as CM – e.g. SA and SS are pre-
dicted for any CM predictor described in section Contact Maps (Jones et al. 2015; 
Wang et al. 2017; Adhikari et al. 2017; Walsh et al. 2009) – protein fold recognition 
(Yang et  al. 2011) and protein tertiary structure (Mooney and Pollastri 2009). 
Notably, a strong (negative) correlation of −0.734 between SA and contact numbers 

Fig. 10.6 A view of SCRATCH protein predictor
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has been observed by Yuan (Yuan 2005) and is motivating the development of pre-
dictors for contact number as a possible alternative to SA predictors (Heffernan 
et al. 2016).

Though there are promising examples of successful NN predictors considering 
adjacent AA to predict SA since the 1990s (Holbrook et al. 1990), different methods 
such as linear regression (Xia and Pan 2000) or substitution matrices (Pascarella 
et al. 1998) have been assessed, but the state of the art has been represented by deep 
NN since 2002 (Pollastri et al. 2002). Thus, all the SA predictors described below 
(and summarised in Table 10.2) implement deep NN (Wang et al. 2016; Heffernan 
et al. 2017; Magnan and Baldi 2014; Mirabello and Pollastri 2013) predicting SA as 
anything between a two-state problem – i.e. buried and exposed with an average 
two-state accuracy greater than 80% – and 20-state problem.

SA has been typically measured as accessible surface area (ASA) – i.e. the pro-
tein’s surface exposed to interactions with the external solvent. ASA is usually 
obtained normalising the relative SA value observed by the maximum possible 
value of accessibility for the specific residue according to the DSSP (Kabsch and 
Sander 1983). The ASA of a protein can be visualised with ASAview, a tool devel-
oped in 2004 that requires real values extracted from the PDB or coming from pre-
dicted ASA (Ahmad et al. 2004). More recently, a different approach to measuring 
the SA, called half-sphere exposure (HSE), has been designed by Hamelryck 
(Thomas 2005). The idea is to split in half the sphere surrounding the Cα atom along 
the vector of Cα-Cβ atoms aiming to provide a more informative and robust measure 
(Thomas 2005). SPIDER3 can predict both HSE and ASA using real numbers 
(Heffernan et al. 2017).

10.3.1  ACCpro

ACCpro is a historical SA predictor initially released in 2002 (Pollastri et al. 2002). 
Since then, it has been developed in parallel with SSpro (see Secondary Structure, 
SSpro) and last updated to its v5  in 2014, adding support for template-base 

Table 10.2 Solvent Accessibility prediction servers

Name Web server Notes

ACCpro (Baldi et al. 
1999)

http://scratch.proteomics.ics.uci.
edu/

two-state or twenty-states, BLAST, 
template-based

PaleAle (Pollastri 
et al. 2007)

http://distilldeep.ucd.ie/paleale/ four-states, HHblits or PSI-BLAST, 
light standalone

RaptorX-Property 
(Heffernan et al. 
2017)

http://raptorx.uchicago.edu/
StructurePropertyPred/predict/

three-states, no PSI-BLAST (only 
HHblits), option for no evolutionary 
information

SPIDER3 (Heffernan 
et al. 2017)

http://sparks-lab.org/server/
SPIDER3/

HSE and ASA in R, Numpy or 
Tensorflow, HHblits and 
PSI-BLAST
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predictions (Magnan and Baldi 2014). Thus, like SSpro, ACCpro adopts the legacy 
BLAST to look for evolutionary information at both sequence and structure level. 
ACCpro predicts whether each residue is more exposed than 25% or not, while 
ACCpro20, an extension of ACCpro, distinguishes 20 states from 0–95% with 
incremental steps of 5%, i.e. ACCpro classifies 20 classes, starting from 0–5% to 
95–100% of SA (Fig. 10.7).

The web server of ACCpro and ACCpro20 is available at http://scratch.pro-
teomics.ics.uci.edu/ as part of SCRATCH (Cheng et al. 2005). Once an email and 
the sequence to predict have been inserted, it is possible to select ACCpro or 
ACCpro20 or any of the available protein predictors (more in Secondary Structure, 
SSpro).

The standalone of ACCpro has been updated in 2015 and is available at http://
download.igb.uci.edu/ as part of SCRATCH-1D v1.1. As described above (in 
Secondary Structure, SSpro), all the requirements are delivered together with the 
bundled predictors – i.e. ACCpro, ACCpro20, SSpro and SSpro8.

Fig. 10.7 A view of SCRATCH protein predictor where both ACCpro predictors have been 
selected
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10.3.2  PaleAle

PaleAle is a historical SA predictor developed in parallel with Porter (see Secondary 
Structure, Porter) since 2007 (Pollastri et al. 2007; Mirabello and Pollastri 2013) 
and is also based on ensembles of cascaded bidirectional recurrent neural networks 
(Baldi et al. 1999). PaleAle has been the first template-based SA predictor (Pollastri 
et al. 2007), while PaleAle (v5) is now able to predict four-state ASA, i.e. exposed 
at 0–4%, 4–25%, 25–50% or 50  +  %. Like Porter5 and Porter+5 (see Torsion 
Angles), PaleAle5 relies on both HHblits and PSI-BLAST to gather evolutionary 
information and, thus, improve its predictions (Fig. 10.8).

The web server of PaleAle is available at http://distilldeep.ucd.ie/paleale/. As for 
Porter and Porter+ (see respective sections), the protein sequence is the only require-
ment while an email address is optional. More information about these servers is 
available in the Secondary Structure, Porter subsection.

The light standalone of PaleAle is available at the same address and requires only 
python3 and HHblits to perform SA predictions. As in Porter, PSI-BLAST can be 
optionally employed to gather further evolutionary information. The output file 
presents the confidence per each of the four states predicted. The datasets are 
released at the same address.

Fig. 10.8 A view of PaleAle5 where the reset button and the links are highlighted
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10.3.3  RaptorX-Property

RaptorX-Property, described in section Secondary Structure, is 2016 suite of pre-
dictors able to predict SA, SS and disorder regions (Wang et al. 2016). RaptorX- 
Property predicts SA in three states with thresholds at 10% and 40%, respectively. 
As for SS predictions, RaptorX-Property can avoid to look for evolutionary infor-
mation to speed up predictions at the cost of lower accuracy. It relies on HHblits 
(Remmert et al. 2012) to gather evolutionary information (Fig. 10.9).

The web server of RaptorX-Property is available at http://raptorx.uchicago.edu/
StructurePropertyPred/predict/. The result page of RaptorX-Property provides the 
predicted 1D annotations in different tabs (Fig. 10.9 shows the three-state SA). The 
web server and the released standalone are described in section Secondary Structure, 
RaptorX-Property.

10.3.4  SPIDER3

SPIDER has been able to predict SA, SS and TA since 2015 (Heffernan et al. 2015) 
and was updated in 2017 (Heffernan et al. 2017). SPIDER3, described also in sec-
tions Secondary Structure and Torsion Angles, predicts the ASA using real numbers 
rather than classes, differently from the other predictors here presented (Heffernan 
et al. 2015). SPIDER2 has been the first HSE predictor (Heffernan et al. 2016), while 
SPIDER3 predicts HSEα-up and HSEα-down using real numbers, although Heffernan 
et al. reports result also in HSEβ-up and HSEβ-down (Heffernan et al. 2017).

The web server and the standalone of SPIDER3 are described in Secondary 
Structure, SPIDER3. As a side note, the result page and the confirmation email of 
the web server show the predicted SA only as ASA in ten classes – i.e. [0–9] – while 
the predicted ASA, HSEβ-up and HSEβ-down in real numbers are listed in the out-
put file (“*.spd33”) in the temporary directory, along with PSSM/HMM files (see 
Figs. 10.5 and 10.10).

Fig. 10.9 The view on the predicted three-state SA performed by RaptorX-Property
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10.4  Torsional Angles

Protein torsion (or dihedral or rotational) angles can accurately describe the local 
conformation of protein backbones. The main protein backbone dihedral angles are 
phi (ϕ), psi (ψ) and omega (ω). The planarity of protein bonds restricts ω to be either 
180° (typical case) or 0° (rarely). Therefore, it is generally sufficient to use ϕ and ψ 
to accurately describe the local shape of a protein.

TA are highly correlated to protein SS and particularly informative in highly 
variable loop regions. In fact, while TA of α-helices and β-sheets are mostly clus-
tered and regularly distributed (Kuang et al. 2004), ϕ and ψ can be more effective in 
describing the local conformation of residues when they are classified as coils (i.e. 
neither of the other SS classes). When four consecutive residues are considered, a 
different couple of angles can be observed: theta (θ) and tau (τ) (Lyons et al. 2014). 
Thus, different annotations (i.e. SS, ϕ/ψ and θ/τ) can be adopted to describe the 
backbone of a protein (Fig. 10.11).

TA are essentially an alternative representation of local structure with respect to 
SS. Both TA and SS have been successfully used as restraints towards sequence 
alignment (Huang and Bystroff 2006), protein folding (Yang et al. 2011) and ter-
tiary structure prediction (Faraggi et al. 2009). HMM (Bystroff et al. 2000), support 
vector machines (SVM) (Kuang et al. 2004) and several architectures of NN (e.g. 
iterative (Heffernan et  al. 2017; Heffernan et  al. 2015) and cascade-correlation 
(Wood and Hirst 2005)) have been analysed to predict TA since 2000. NN are cur-
rently the main tool to predict TA, in parallel with protein SS (Heffernan et al. 2017) 
or sequentially after it (Wood and Hirst 2005; Mooney et al. 2006).

Fig. 10.10 A view of the input window of SPIDER3. The steps to follow to start a prediction are 
highlighted
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ϕ and ψ can be predicted as real numbers or letters(/clusters). In fact, ϕ and ψ can 
range from 0° to 360° but are typically observed in certain ranges, given from chem-
ical and physical characteristics of proteins. Bayesian probabilistic (De Brevern 
et al. 2000; Ting et al. 2010), multidimensional scaling (MDS) (Sims et al. 2005) 
and density plot (Kuang et al. 2004) approaches have been exploited to define dif-
ferent alphabets of various sizes (Tables 10.3 and 10.4).

Fig. 10.11 Protein backbone 
dihedral angles phi, psi and 
omega; credits: https://commons.
wikimedia.org/wiki/File:Protein_
backbone_PhiPsiOmega_
drawing.svg

Table 10.3 ϕ/ψ angles prediction web server

Name Web server Notes

Porter+ (Mooney et al. 
2006)

http://distilldeep.ucd.ie/porter+ ϕ/ψ in 16 letters

SPIDER3 (Heffernan et al. 
2017)

http://sparks-lab.org/server/
SPIDER3/

ϕ/ψ and θ/τ , Numpy or 
Tensorflow

Table 10.4 Protein contact maps prediction servers

Name Web server Notes

DNCON (Adhikari et al. 
2017)

http://sysbio.rnet.missouri.
edu/dncon2/

Three coevolution algorithms, 
Computer Vision inspired

MetaPSICOV (Jones et al. 
2015)

http://bioinf.cs.ucl.ac.uk/
MetaPSICOV/

CCMpred, FreeContact and 
PSICOV, hydrogen bonds

RaptorX-Contact (Wang 
et al. 2017)

http://raptorx.uchicago.edu/
ContactMap/

Inspired from Computer Vision, 
CCMpred only

XX-Stout (Walsh et al. 
2009)

http://distilldeep.ucd.ie/
xxstout/

Contact Density, template-based, 
multi-class CM
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Fig. 10.12 A view of Porter+5 where the steps to start a prediction are highlighted

10.4.1  Porter+

Porter+ is a TA predictor able to classify the ϕ and ψ angles of a given protein. It 
was initially developed in 2006 as intermediate step to improve Porter (a SS predic-
tor described in section Secondary Structure) (Mooney et al. 2006). Porter+ adopts 
an alphabet of 16 letters devised by Sims et al. using MDS on tetrapeptides (four 
contiguous residues) (Sims et al. 2005). Porter+, similarly to Porter and PaleAle 
(see Solvent Accessibility, PaleAle), implements BLAST+ to gather evolutionary 
information and improve the final prediction. As Porter and PaleAle, the most recent 
version of Porter+ (v5) adopts also HHblits to greatly improve its accuracy.

The web server of Porter+ is available at http://distilldeep.ucd.ie/porter+. The 
protein sequence is required, while an email address is optional. It will be then suf-
ficient to confirm (clicking “Predict”) to view a confirmation page with the over-
view of the job. Once ready, the prediction will be received by email. It will resemble 
the format adopted for Porter; see in section Secondary Structure. Porter+ can be 
executed in parallel with Porter or PaleAle, or several more protein predictors, at 
http://distillf.ucd.ie/distill/ to predict SS, SA or other protein features, respectively 
(Fig. 10.12).

The light standalone of Porter+ is available at http://distilldeep.ucd.ie/porter++ 
and closely resembles the one described in section Secondary Structure, Porter. The 
output of Porter+ overviews the confidence for all 14 classes predicted. The datasets 
adopted for training and testing purposes are also released.
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Fig. 10.13 A view of the results page of SPIDER3 where the steps to view the predicted TA are 
highlighted

10.4.2  SPIDER3

SPIDER3, also in section Secondary Structure and Solvent Accessibility, predicts 
TA using real numbers (R). SPIDER was initially released in 2014 to predict only 
θ/τ (Lyons et al. 2014). It has been further developed to also predict ϕ/ψ, in parallel 
with SS, SA and contact numbers (see the respective sections) (Heffernan et  al. 
2017; Heffernan et al. 2015). More details, regarding the pipeline implemented, the 
web server offered and the standalone available, are outlined in section Secondary 
Structure (Fig. 10.13).
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10.5  Contact Maps

Contact Maps (CM) are the main two-dimensional protein structure annotation 
tools. A plain 2D representation of protein tertiary structure would describe the 
distance between all possible pairs of AA using a matrix containing real values. 
Such dense representation, referred as distance map, is reduced to a more compact 
abstraction – i.e. CM – by quantising a distance map through a fixed threshold, i.e. 
describing distances not as real numbers but as contacts (distance smaller than the 
threshold) or no. This latter abstraction is routinely exploited to reconstruct protein 
tertiary structures implementing heuristic methods (Vassura et al. 2008; Vendruscolo 
et al. 1997). Thus, 3D structure prediction being a computationally expensive prob-
lem motivates the development of the aforementioned heuristic methods that aim to 
be both robust against noise in the CM – i.e. to ideally fix CM prediction errors – 
and computationally applicable on a large scale (Vassura et al. 2011; Kukic et al. 
2014). Following closely the development of the third generation of SS predictors, 
motivated by the same abundance of available data and computational resources, 
MSA have been thoroughly tested and successfully exploited to extract promising 
features for CM prediction  – e.g. correlated mutations, sequence conservation, 
alignment stability and family size (Pazos et al. 1997; Olmea and Valencia 1997; 
Göbel et  al. 1994). These initial advancements led to the first generation of ML 
methods able to predict CM (Vullo et al. 2006; Fariselli et al. 2001; Cheng and Baldi 
2007). Given that MSA are replete with useful but noisy information, statistical 
insights have been necessary to further exploit the growing amount of evolutionary 
information – e.g. distinguishing between indirect and direct coupling (Jones et al. 
2012; Di Lena et al. 2011). The most recent CM predictors gather recent intuitions 
in both statistics and advanced ML, aiming to collect, clean and employ as much 
useful data as possible (Jones et al. 2015; Wang et al. 2016; Adhikari et al. 2017). 
Differently from the other protein annotations in this chapter, CM is currently 
assessed at CASP (Schaarschmidt et al. 2018) and CAMEO (Haas et al. n.d.).

The intrinsic properties of CM – namely, being compact and discrete two-state 
annotations, invariant to rotations and translations – make them a more appropriate 
target for ML techniques than protein tertiary structures or distance maps although 
still highly informative about the protein 3D structures (Bartoli et  al. 2008). CM 
prediction is a typical intermediate step in many pipelines to predict protein tertiary 
structure (Mooney and Pollastri 2009; Roy et al. 2010; Kosciolek and Jones 2014). 
For example, it is a key component for contact-assisted structure prediction (Kinch 
et al. 2016), contact-assisted protein folding (Wang et al. 2017) and free and template- 
based modelling (Roy et al. 2010). CM have also been used to predict protein disor-
der (Schlessinger et al. 2007) and protein function (Pazos et al. 1997) and to detect 
challenging templates (Mooney and Pollastri 2009). In fact, even partial CM can 
greatly support robust and accurate protein structure modelling (Kim et al. 2014).

Being a 2D annotation, CM are typically gradually predicted starting from simpler 
but less informative 1D annotations – e.g. SA, SS and TA (Fariselli et al. 2001; Cheng 
and Baldi 2007; Pollastri and Baldi 2002). The advantages of this incremental 
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approach lie in the intrinsic nature of protein abstractions – i.e. 1D annotations are 
easier to predict while providing useful insights. For example, Fig. 10.14 highlights 
the strong relations between SS conformations and CM. The contact occupancy – i.e. 
contact number, or number of contacts per AA – is another 1D protein annotation 
which has been successfully predicted (Heffernan et al. 2017; Pollastri et al. 2001, 
2002) to adjust and improve CM prediction (Olmea and Valencia 1997; Fariselli et al. 
2001; Pollastri and Baldi 2002). Eigenvector decomposition has been used as a means 
for template search (Di Lena et al. 2010) and principal eigenvector (PE) prediction as 
an intermediate step towards CM prediction (Vullo et al. 2006). Finally, correlated 
mutations appear to be the most informative protein feature for CM prediction – i.e. 
residues in contact tend to coevolve to maintain the physiochemical equilibrium 
(Pazos et al. 1997; Olmea and Valencia 1997; Göbel et al. 1994). Thus, statistical 
methods have been extensively assessed to look for coevolving residues, gathering 
mutual information from MSA while aiming to discriminate direct from indirect cou-
pling mutations, e.g. implementing sparse inverse covariance estimation to remove 
indirect coupling (Jones et al. 2012; Kaján et al. 2014; Seemayer et al. 2014).

As in Fig. 10.14, CM are represented as (symmetric) matrices or graphs – rather 
than vectors – where around 2–5% of all possible pairs of AA are “in contact”, i.e. 
an unbalanced problem in ML (Bartoli et al. 2008). Notably, the number of AA in 
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contact increases almost linearly with the protein length – i.e. shorter proteins are 
denser than longer ones (Bartoli et al. 2008). A pair of AA is in contact when the 
Euclidian distance between their Cβ (or Cα, for glycine) atoms is closer than a given 
threshold. This threshold is usually set between 6 and 12  Å (8  Å at CASP 
(Schaarschmidt et al. 2018)), although values in the range of 10–18 Å may lead to 
better reconstructions (Vassura et al. 2008). In fact, it is arguable whether all pre-
dicted “contacts” should be taken in consideration or certain criteria should be 
applied, such as focusing on those predicted with the highest confidence – i.e. the 
top 10, L/5, L/2 or L contacts, with L = protein length – or with a minimum probabil-
ity threshold (Schaarschmidt et al. 2018). For example, tertiary structure modelling 
benefits more from well-distributed contacts; thus the entropy score is one of the 
measures of interest to evaluate CM predictors (Schaarschmidt et  al. 2018). 
Precision – i.e. the ratio between true contact and wrong contact (true contact + 
wrong contact) – is usually adopted to assess local (short range) contacts, i.e. involv-
ing AA within ten positions apart, and non-local (long range) contact, separately. 
Typically, CM predictors are evaluated at CASP through more complex measures 
(Schaarschmidt et al. 2018; Kinch et al. 2016; Monastyrskyy et al. 2014), such as 
z-scores, i.e. weighted sum of energy separation with the true structure for each 
domain; GDT_TS, i.e. score of optimal superposition between the predicted and the 
true structure; and root-mean-square deviation (RMSD) or TM-score, i.e. a measure 
more sensitive at the global (rather than local) structure than RMSD (Zemla 2003). 
Classic statistical and ML measures, such as the aforementioned precision, recall, 
F1 score and Matthews correlation coefficient (MCC), are also adopted in parallel 
with more unusual ones, such as alignment depth or entropy score (Schaarschmidt 
et al. 2018). The average precision of the top predictors at CASP12 was 47% on L/5 
long-range contacts for the difficult category, while the highest GDT_TS for each of 
the 14 domains assessed went from 12 to 70 (Schaarschmidt et al. 2018).

Though correlated mutations and NN have been identified as promising instru-
ments to also predict CM (Fariselli et  al. 2001), pairwise contact potential 
(Schlessinger et  al. 2007), self-organising maps (MacCallum 2004) and SVM 
(Cheng and Baldi 2007) have been used in the past. While 2D-BRNN (Pollastri and 
Baldi 2002; Tegge et al. 2009), multistage (Vullo et al. 2006; Di Lena et al. 2012) 
and template-based (Walsh et al. 2009) NN approaches have initially characterised 
the field (Martin et al. 2010), the most recent CM predictors rely on multiple 1D 
protein annotation predictors – e.g. predicting SA and SS along with other protein 
features – two-stage approaches and coevolution information (Adhikari et al. 2017; 
Buchan and Jones 2018) or multi-class maps (Kukic et al. 2014; Martin et al. 2010). 
The standard output format of any CM predictor is a text file organised in five col-
umns as follows: the positions of the two AA in contact, a blank column, the set 
threshold (8 Å) and the confidence of each predicted contact.
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10.5.1  DNCON2

DNCON has been initially released in 2012 (Eickholt and Cheng 2012), assessed at 
CASP10 (Monastyrskyy et al. 2014) and updated in 2017 (Adhikari et al. 2017). 
DNCON2 gathers coevolution signal along with 1D protein features – e.g. PSIPRED 
and SSpro (see section Secondary Structure)  – with a similar approach to 
MetaPSICOV2 (see below). It then predicts CM with different thresholds – namely, 
6, 7.5, 8, 8.5 and 10 Å – resembling the multi-class maps of XX Stout (see below) 
and finally refines them generating only one CM at 8 Å. In the described two-stage 
approach, DNCON2 implements a total of six NN like RaptorX-Contact (Fig. 10.15). 
Thus, DNCON2 further exploits the most recent intuitions in CM prediction, includ-
ing recent ML algorithms.

The web server and dataset of DNCON2 are available at http://sysbio.rnet.mis-
souri.edu/dncon2/. JobID and email are required, along with the sequence to predict 
(up to two sequences at time). Once the prediction is ready, typically in less than 
24 h, the predicted CM is sent by email in both text and image format as email con-
tent and attachment, respectively. The email content specifies the number of align-
ments found and the predicted CM (in the standard five columns text format).

The standalone of DNCON2 is available at https://github.com/multicom-tool-
box/DNCON2/. The same page lists all the instructions to install every requirement, 
i.e. CCMpred (Seemayer et  al. 2014), FreeContact (Kaján et  al. 2014), HHblits 
(Remmert et  al. 2012), JackHMMER (Johnson et  al. 2010) and PSICOV (Jones 
et  al. 2012) for coevolution information, python libraries (such as Tensorflow), 
MetaPSICOV and PSIPRED (see Secondary Structure, PSIPRED) for SS and SA 
prediction. Once all the requirements are met, it is possible to verify whether 

Fig. 10.15 The pipeline of DNCON2 is summarised in the confirmation page
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DNCON2 is fully running dealing with the predictions of three proposed sequences. 
The results of each predictor and package involved are organised in directories.

10.5.2  MetaPSICOV

MetaPSICOV is a CM predictor which has been initially released in 2014 for CASP11 
(Kosciolek and Jones 2016) and updated in 2016 for CASP12 (Buchan and Jones 
2018). It is recognised as the first CM predictor successfully able to exploit the recent 
advancements in coevolutionary information extraction (Monastyrskyy et al. 2016). 
In particular, MetaPSICOV achieved this result implementing three different algo-
rithms to extract coevolution signal from MSA generated with HHblits (Remmert 
et al. 2012) and HMMER (Finn et al. 2011) – i.e. CCMpred (Seemayer et al. 2014), 
FreeContact (Kaján et al. 2014) and PSICOV (Jones et al. 2012) – along with other 
local and global features used for SVMcon (Cheng and Baldi 2007). It relies on 
PSIPRED (see Secondary Structure, PSIPRED) to predict SS and a similar ML 
method to predict SA. As a final step, MetaPSICOV adopts a two- stage NN to infer 
CM from the features described (Jones et al. 2015). The web server and standalone of 
MetaPSICOV can be used to predict hydrogen-bonding patterns (Jones et al. 2015).

The web server of the 2014 version of MetaPSICOV is available at http://bioinf.
cs.ucl.ac.uk/MetaPSICOV. A simple interface, which resembles the web server of 
PSIPRED (see Secondary Structure, PSIPRED), asks for a single sequence in 
FASTA format and a short identifier. A confirmation page is automatically shown 
when the job is completed. If an email address is inserted, an email containing only 
the permalink to the result page will be sent. As in Fig. 10.16, the result page con-
tains links to the output of MetaPSICOV stage 1 (also as image), of stage 2, of 

Fig. 10.16 A typical result page of MetaPSICOV. All the files, except the png, follow PSICOV’s 
format
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MetaPSICOV-hb (hydrogen bonds) and of PSICOV. A typical CM takes between 
20 min and 6 h to be predicted.

The very last version of MetaPSICOV is usually available as standalone at http://
bioinfadmin.cs.ucl.ac.uk/downloads/MetaPSICOV/. To run MetaPSICOV2, it is 
required to install (legacy) BLAST, PSIPRED, PSICOV, FreeContact, CCMpred, 
HHblits and HMMER, separately. Once the required packages are installed, it is 
sufficient to follow the README to complete the setup and run MetaPSICOV2. 
Each run of MetaPSICOV2 will generate the needed features – i.e. the output of the 
required packages, such as PSIPRED and PSICOV – along with the predicted CM 
(in standard text format).

10.5.3  RaptorX-Contact

RaptorX-Contact is a 2016 CM predictor which performed well at the last CASP12 
(Wang et al. 2017; Schaarschmidt et al. 2018; Wang et al. 2018). RaptorX-Contact 
aimed to exploit both computer vision (LeCun et al. 2015) and coevolution intu-
itions to further improve CM prediction. It employs RaptorX-Property (Wang et al. 
2016) (see Secondary Structure and Solvent Accessibility) to predict SS and SA, 
CCMpred (Seemayer et al. 2014) to look for coevolutionary information and in- 
house algorithms for mutual information and pairwise potential extraction. RaptorX- 
Contact was trained using MSA generated with PSI-BLAST (Schäffer et al. 2001) 
while it uses HHblits (Remmert et al. 2012) at prediction time. Thus, the web server 
and standalone depend on HHblits only.

The web server of RaptorX-Contact is available at http://raptorx.uchicago.edu/
ContactMap/. Once a protein sequence (in FASTA format) has been inserted, it is 
possible to submit it and a result URL will be provided (Fig. 10.17). A JobID is 
recommended to distinguish among past submissions in the “My Jobs” page, while 

Fig. 10.17 The confirmation page of RaptorX-Contact tells the pending jobs ahead and the result 
URL
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an email address can be specified to receive the outcome of RaptorX-Contact by 
email – i.e. the result URL and, as attachments, the predicted CM in text and image 
format. The tertiary structure is also predicted by default, but it is possible to 
uncheck the respective box to speed up the CM prediction. Up to 50 protein primary 
structures can be submitted at the same time through the input form or uploaded 
from one’s computer. Optionally, a MSA (of up to 20,000 sequences) can be sent 
instead of a protein sequence. The result URL links to an interactive page where it 
is possible to navigate the predicted CM besides downloading it in text or image 
format. The MSA generated (in A2M format), the CCMpred (Seemayer et al. 2014) 
output and the 3D models (if requested) are also made available. Finally, it is also 
possible to query the web server from command line (using curl) as explained at 
http://raptorx.uchicago.edu/ContactMap/documentation/.

10.5.4  XX-STOUT

XX STOUT is a CM predictor initially released in 2006 (Vullo et  al. 2006) and 
further improved to be template-based (Walsh et al. 2009) and multi-class in 2009 
(Martin et al. 2010). XX STOUT employs the predictions by BrownAle, PaleAle 
and Porter (see Secondary Structure and Solvent Accessibility) – i.e. contact den-
sity, SS and SA predictions, respectively – to generate multi-class CM, i.e. CM with 
four- state annotations. When either PSI-BLAST (Schäffer et  al. 2001) or the in-
house fold recognition software finds homology information, further inputs are pro-
vided to XX STOUT to perform template-based predictions – i.e. greatly improve 
the prediction quality exploiting proteins in the PDB (Berman et al. 2000; Mooney 
and Pollastri 2009).

The web server of XX STOUT is available at http://distilldeep.ucd.ie/xxstout/. 
An email address and the plain protein sequence are required to start the prediction; 
a JobID is optional. The confirmation page summarises the information provided 
and the predictors which are going to be used – i.e. the aforementioned 1D predic-
tors and SCL-Epred, a predictor of subcellular localisation (Mooney et al. 2013). 
The predicted CM (threshold 8 Å), the prediction per residue of SS, SA and contact 
density and the predicted protein’s location are sent by email. The same email 
describes the confidence of SCL-Epred’s prediction and whether the whole predic-
tion has been based on PDB templates and, if found, of which similarity with the 
query sequence. The standalone of XX STOUT and required 1D predictors are 
available on request (Fig. 10.18).
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Fig. 10.18 XX STOUT sends the predicted protein structure annotations in the body email except 
the CM (which is attached)
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10.6  Conclusions

In this chapter we have discussed the importance of protein structure to understand 
protein functions and the need for abstractions – i.e. protein structural annotations – 
to overcome the difficulties of determining such structures in vitro. We have then 
presented an overview of the role bioinformatics – i.e. in silico biology – has played 
in advancing such understanding, thanks to one- and two-dimensional abstractions 
and efficient techniques to predict them that are applicable on a large scale, such as 
machine learning and deep learning in particular. The typical pipeline to predict 
protein structure annotations was also presented, highlighting the key tools adopted 
and their characteristics.

The chapter then described the main one- and two-dimensional protein structure 
annotations, from their definition to samples of state-of-the-art methods to predict 
them. We have given a concise introduction to each protein structure annotation try-
ing to highlight what, why and how is predicted. We also tried to give a sense of how 
different abstractions are linked to one another and how this is reflected in the sys-
tems that predict them.

A considerable part of this chapter is dedicated to presenting, describing and 
comparing state-of-the-art predictors of protein structure annotations. The methods 
presented are typically available as both web servers and standalone programs and, 
thus, can be used for small- or large-scale experiments and studies. The general aim 
of this chapter is to introduce and facilitate the adoption of in silico methods to 
study proteins by the broader research community.
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11.1  Introduction

The generation of the large scale of biomedical data in the past decade in genomics, 
proteomics, metabolomics and other “Omics” approaches and the parallel develop-
ment of innovative computing methodologies have immensely transformed our 
basic understanding of biology and medicine (Hieter and Boguski 1997). Functional 
bioinformatics is a subarea of computational biology that utilizes the massive 
amount of data derived from genomics, transcriptomics, proteomics, glycomics, 
lipidomics, metabolomics and other large-scale “omics” experiments in interrelated 
areas, to decipher the complex gene and protein functions and interactions in both 
health and disease (Fig. 11.1). The number of publications in the area of functional 
bioinformatics increased significantly from less than 100 in the year 1998 to about 
38,000 till the middle of July 2018 (Fig. 11.2).

The whole set of DNA found in each cell is defined as the genome. Each cell 
contains a complete copy of the genome, distributed along chromosomes (com-
pressed and entwined DNA). About 3.2 × 109 base pairs (3 billion base pairs) in 
the human DNA, which is about 6 feet (2 metres) in each cell if stretched out as a 
thin thread, encode blueprint for all cellular structures, functions and other activi-
ties (Miyaoka et  al. 2016). Though the explosion of high-throughput data in 
molecular biology has befell in the past decade to decode the central dogma 
(Fig.  11.3), our functional understanding of cellular and molecular processes 
requires integrated analyses of heterogeneous data sources with robust computa-
tional methods.

In functional genomics, the roles of genes are determined using high-throughput 
technologies such as the microarrays, next-generation sequencing approaches, etc. 
It decodes how genomes, proteomes and metabolomes result in different cellular 
phenotypes and analyses differences in how the same genome functions differently 
in diverse cell types and how changes in genomes alter both cellular and molecular 
functions through differential expression of transcripts or genes (DEGs) which in 
turn regulate the expression of proteins and metabolites in the cells (Fig. 11.4). An 
array of computational tools are used in functional bioinformatics approaches to 
decipher complex biological information in diverse datasets to generate precise bio-
logical understanding and hypotheses about gene functions, protein expression, 
interactions and regulations in health and disease.
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Transcriptomics

Genomics

Proteomics

MetabolomicsLipidomics

Glycomics

Functional
Bioinformatics
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Fig. 11.1 The central paradigm of functional bioinformatics. The functional analyses of genes, 
proteins, and metabolites using an array of open source and commercial Bioinformatics tools, in 
contrast to other bioinformatics techniques such as Sequence and Structural Analyses, can be 
termed as Functional Bioinformatics. It is used for molecular profile analysis, pattern detection in 
multi-variate data, detection of biologically relevant signatures, network analyses etc. Molecular 
profiles are deciphered from complex data derived from an array of high-throughput “Omics” 
platforms for their correlation and functional relationships in both health and disease

Fig. 11.2 The number of publications in functional bioinformatics. The bibliometric analyses 
using the largest bibliometric database, Scopus has shown that about 30 documents were published 
related to the Functional Bioinformatics in the year 1998 and it increased drastically in the past 
20 years. In total, 12, 997 publications were published in the area of Functional Bioinformatics till 
the middle of 2018
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Fig. 11.3 The central dogma of molecular biology

Fig. 11.4 Functional genomics and functional bioinformatics paradigm. Functional Genomics is 
the study of how the genome, transcripts (genes), proteins and metabolites work together to pro-
duce a particular phenotype. Together, transcriptomics, proteomics and metabolomics describe the 
transcripts, proteins and metabolites of a biological system, and the Functional Bioinformatics 
analyses and the integration of these processed data is expected to provide a complete model of the 
biological system under study
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11.2  Techniques in Functional Genomics

Techniques used in functional genomics range from low-throughput techniques 
such as real-time quantitative PCR (SYBR Green and TaqMan methods), digital 
PCR (dPCR) (Didelot et al. 2013; Zhong et al. 2011) and serial analysis of gene 
expression (SAGE) to high-throughput technologies such as microarrays and next- 
generation sequencing technologies (mainly RNASeq) (Sorlie et  al. 2006; Wang 
et  al. 2006). Functional genomics experiments measure changes in the genome, 
transcriptome, proteome, and metabolome (metabolites) or interactions between 
DNA/RNA/proteins and metabolites that significantly impact or modulate the phe-
notype of an individual or a biological sample. However, the functional genomics 
techniques are mainly used for transcription profiling, epigenetic profiling, nucleic 
acid-protein interactions and genotyping for single-nucleotide polymorphisms 
(SNP) in biological samples. In this chapter, I will be focusing on the high- 
throughput microarray technologies and functional bioinformatics strategies to 
decipher the complex “Omics” data.

11.3  Microarray Technology

Microarrays are made up of short oligonucleotide probes (DNA), which are evenly 
bound in defined positions onto a solid surface, such as a glass slide, onto which 
DNA fragments derived from the biological samples will be hybridized (Bunnik 
and Le Roch 2013). Importantly, the microarrays can further be classified into two 
types, namely, one-colour arrays (Affymetrix) and two-colour arrays (Agilent). In 
two-colour arrays, such as Agilent arrays, the oligonucleotides (probes) are coated 
onto the glass slides using inkjet printing technology (Agilent uses highly efficient 
SurePrint Technology), and in one-colour arrays (Affymetrix), the probes are syn-
thesized in situ on a solid surface by photolithography. The single-stranded cDNA 
or antisense RNA molecules derived from biological samples are then hybridized to 
these DNA microarrays using stringent methods. The quantity of hybridization 
measured for each specific probe is directly proportional to the number of specific 
mRNA transcripts present in the biological samples. On the other hand, Illumina 
uses bead microarray technology that is based on 3-micron silica beads that self- 
assemble in micro wells either on the fibre-optic bundles or planar silica slides. The 
self-assembly of these beads has a uniform spacing of ~5.7 microns and is covered 
with several copies of a specific oligonucleotide acting as the capture sequences in 
the Illumina microarrays (Eijssen et al. 2015).

It is essential to decide whether to quantify the gene expression levels from 
each sample on separate microarrays (one-colour array such as Affymetrix) or to 
calculaterelative gene expression levels between a pair of samples on a single 
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microarray (two-colour array such as Agilent) (Fig. 11.5). Importantly, the effi-
ciency of both one-colour and two-colour arrays is almost identical (Sorlie et al. 
2006; Wang et al. 2006).

To obtain sufficient statistical power, a minimum of three replicates is recom-
mended in microarray experiments. Without replicates, the measurement of 
 statistical significance and reliability of the experimental changes is not possible, 
since an increased number of both false-positive and false-negative errors will result 
in the detection of differentially expressed genes. There are two types of replicates 
used in microarray studies such as technical replicates and biological replicates 
(Grant et al. 2007). At least, three biological replicates are essential in repositories 
such as Expression Atlas to get sufficient statistical power to derive differentially 
expressed genes (Petryszak et al. 2014).

Fig. 11.5 The comparison of two-colour and one-colour microarray platforms used in functional 
genomics. In two colour microarrays (Agilent), two biological samples (experimental/test sample 
and control/reference sample) are labelled with different fluorescent dyes, usually Cyanine 3 (Cy3) 
and Cyanine 5 (Cy5). Equal amounts of labelled cDNA are then simultaneously hybridized to the 
same microarray chip. After this competitive hybridization, the fluorescence measurements are 
made separately for each dye and represent the abundance of each gene in one sample (test sample, 
Cy5) relative to the other one (control sample, Cy3). The hybridization data are reported as a ratio 
of the Cy5/Cy3 fluorescent signals at each probe. By contrast, in one colour microarrays 
(Affymetrix), each sample is labelled and hybridized to a separate microarray and we get an abso-
lute value of fluorescence for each probe
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11.4  Functional Bioinformatics Analyses of Microarray Data

Microarrays can be used in many types of experiments including genotyping, epi-
genetics, translation profiling and gene expression profiling. However, microarray 
technologies are mainly used for gene expression profiling in the past decade. 
Mostly, both one- and two-colour microarrays are used for the quantification of 
gene expression in biological samples. The process of analysing gene expression 
data is similar for both types of microarrays and several predefined steps to derive 
the differentially expressed genes from the data (Fig. 11.6). The main steps used in 
the microarray data analysis pipeline are listed below.

 1. Feature extraction (image processing)
 2. Quality control (QC)
 3. Normalization
 4. Differential expression analyses
 5. Biological interpretation of the results
 6. Submission of data to a public repository

11.4.1  Feature Extraction (Image Processing)

Feature extraction or image processing is the process of reading the scanned images 
of the microarrays into computable values either in binary or text format and inter-
preting it with corresponding gene IDs, sample names and other related information 
for further downstream data analysis process. The feature extraction is normally 
done by the software provided by the microarray manufacturers, which creates a 

Feature
Extraction

(Image
Processing)

Quality Control Normalization

Biological
Interpretation

(Cluster Analysis,
GO, GSEA, and

Pathway
Analysis)

Submission of
Data to Public

Repositories (GEO
& ArrayExpress)

Fig. 11.6 Microarray analysis pipeline. An overview of microarray data analyses pipeline com-
monly used in functional bioinformatics
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binary file [CEL(Affymetrix), IDAT (Illumina)] or a text file (Agilent, Illumina, 
NimbleGen arrays, custom-made cDNA-spotted arrays, etc.,), at the end of the 
image-processing stage (Mehta and Rani 2011; Mehta 2011).

The next step is the downstream analysis of the binary or the text files obtained 
by image processing. There are varieties of microarray analysis software already 
available from various sources for the microarray data analysis (Koschmieder et al. 
2012). However, either  commercial software  such as GeneSpring GX (Agilent, 
USA), Partek Genomics Suite 7.0 (Partek Inc., USA), etc. or free open source soft-
ware such as the Transcriptome Analysis Console (TAC) software for the analysis 
of CEL files obtained from experiments using Affymetrix microarrays (Thermo 
Fisher Scientific, USA), GenePattern, R Studio (R packages “limma” and “oligo”), 
etc. (Mehta and Rani 2011; Mehta 2011) are most commonly used for this 
purpose.

11.4.2  Quality Control

The quality control (QC) is an important step in the analysis of microarray data. 
Initial QC step involves the visual inspection of scanned microarray images for any 
blank areas, local artefacts, marks, abrasions and other physical defects compared 
to normal scanned microarray images. The background signal, average intensity 
values and number, as well as the percentage of genes above the background signal, 
can be plotted for further inspection using the microarray analysis softwares to iden-
tify arrays with problems and eliminate these arrays from the analysis.

11.4.3  Normalization

The normalization of microarray data has been performed immediately after the 
feature extraction or image analysis before commencing the analysis of microar-
ray data to control the technical variations between the arrays without affecting the 
biological variations (Quackenbush 2002; Irizarry et al. 2003a). The normalization 
of microarray data is essential to eliminate systematic bias such as sample prepara-
tion, spatial effects, variation in hybridisation, bias in the experiments and scanner 
settings, etc. An array of methods is used to normalize the microarray data, and it 
primarily depends on the experimental design, type of arrays, type of normaliza-
tion algorithm and null hypothesis about the differentially expressed genes 
(Quackenbush 2002). Quantile normalization is used for one-colour arrays 
(Affymetrix), and loess normalization is used for two-colour arrays (Agilent) 
(Irizarry et al. 2003b). The Robust Multi-array Average (RMA) algorithm is used 
to normalize Affymetrix and NimbleGen arrays using “oligo” package in 
Bioconductor, and the Agilent arrays are mostly normalized using “limma” pack-
age in Bioconductor (Irizarry et al. 2003a, b).
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11.4.4  Differential Expression Analysis

The analysis of differential expression of genes (DEGs) in a given sample is a com-
parative measurement related to the corresponding control, different treatments, 
disease states and so on (Hochberg and Benjamini 1990; Klipper-Aurbach et  al. 
1995; Tamhane et al. 1996). Multiple comparison procedure (MCP) or multiple test-
ing is a statistical occurrence when the comparison of DEGs across multiple condi-
tions is performed for a small number of samples (most of the microarray experiments 
involve less than five biological or technical replicates per condition). The multiple 
testing of DEGs across an array of conditions might lead to false-positive results. 
Hence, the multiple testing correction is essential when measuring the DEGs 
(Hochberg and Benjamini 1990; Klipper-Aurbach et al. 1995; Tamhane et al. 1996). 
The multiple testing correction is done by measuring the log2 fold change ratio 
between the test and control conditions, and a corrected p-value will also be calcu-
lated to identify the statistical significance in many open source and commercial 
software used to analyse microarray data (Hochberg and Benjamini 1990; Klipper- 
Aurbach et al. 1995; Tamhane et al. 1996).

11.4.5  Biological Interpretation of Gene Expression Data

The biological interpretation of the massive gene expression data is obtained using 
high-throughput techniques such as microarrays and RNAseq using heat maps and 
clustering, gene enrichment analysis, pathway analysis, etc.

11.4.5.1  Heat Maps and Clustering Algorithms

The generation of dendrograms or heat maps is the most common way of represent-
ing gene expression data from high-throughput techniques such as microarray 
(Quackenbush 2002). The heat map may also be combined with clustering methods 
which group genes and/or samples together based on the similarity of their gene 
expression pattern. This can be useful for identifying genes that are commonly regu-
lated or biological signatures associated with a particular condition (e.g., a disease, 
drug treatment, an environmental condition, etc.). There are many open source soft-
ware freely available for academic purposes such as Genesis provided by the 
Institute of Computational Biotechnology, Graz University of Technology, Austria, 
with easy-to-use graphical user interface (GUI), which can be used for the genera-
tion of heat maps as well as hierarchical clusters with single linkage, average link-
age and complete linkage to deduce gene signatures (Fig.  11.7) (Quackenbush 
2002). However, commercial software used for microarray data analysis such as 
GeneSpring (Agilent, USA), Partek Genomic Suite (Partek Inc., USA), etc. can also 
generate the heat maps and clusters from the gene expression data. In heat maps, 
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each row denotes a gene, and each column denotes a sample. The colour, as well as 
the intensity of each row (gene), varies based on the changes in the expression of the 
individual gene. In the example given in Fig. 11.7, orange represents up-regulated 
genes, blue represents down-regulated genes, and blank or grey represents the 
unchanged expression.

11.4.5.2  Gene Set Enrichment Analysis and Pathway Analysis

The Gene Ontology (GO) is a complete source of computable knowledge about the 
functions of genes and gene products, and it is used comprehensively in biomedical 
research specifically for the analysis of -omics and related data (Ashburner et al. 
2000; Ashburner and Lewis 2002; Harris et al. 2004; The Gene Ontology C 2017). 
The gene set enrichment analysis (GSEA) based on the GO functional annotation of 
the differentially expressed genes to interpret the differentially expressed gene sets 
to decipher its association with a particular molecular or biological function or pro-
cess, chromosomal location, etc. (Subramanian et al. 2005). The GSEA can be per-
formed using the desktop application GSEA-P (Subramanian et al. 2007). The most 
common tools used for gene set enrichment and pathway enrichment analyses are 
the Database for Annotation, Visualization and Integrated Discovery (DAVID) 

Fig. 11.7 Heatmaps and hierarchical clustering. (a) An example of a dendrogram (Heat Map) and 
hierarchical clustering of the control and experimental arrays. (b–d) Agglomerative hierarchical 
clustering of differentially expressed genes in the control and experimental arrays using single 
linkage, average linkage and complete linkage algorithms by Genesis software. Here, orange rep-
resents up-regulated genes and blue represents down-regulated genes and blank or grey represents 
unchanged expression
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(Sherman and Lempicki 2009a, b; Huang et al. 2009), Ingenuity Pathway Analysis 
(IPA) (Abu-Elmagd et al. 2017; Kalamegam et al. 2015), Pathway Studio (Rahbar 
et al. 2017), Reactome (Fabregat et al. 2017), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (Yang et  al. 2018), STRING (Yang et  al. 2018), PathVisio 
(Kutmon et al. 2015; Fried et al. 2013), etc.

11.4.6  Submission of Data to a Public Repository

The microarray raw and the processed data generated from the experiments should 
be submitted along with metadata to any of the public repositories such as Gene 
Expression Omnibus (GEO), ArrayExpress (AE), etc. This is now a mandatory pre-
requisite to publish papers in journals and submit a progress report to funding bod-
ies. Functional genomics data generated from microarray- and NGS-based methods 
are difficult to store, retrieve, maintain and transfer; hence, the large publically 
available repositories such as ArrayExpress and GEO are very important. The stored 
data in the public repositories are essential and economical since it can be easily 
retrieved for review, reanalysis and redistribution for the benefit of research and 
development and the ultimate benefit of mankind. However, the submitted microar-
ray data should be MIAME (Minimum Information About a Microarray Experiment) 
complaint for archiving in these repositories (Brazma et al. 2001).

11.5  Applications and Limitations of Microarrays

Apart from gene expression studies, microarrays can also be used to evaluate copy 
number variation, genotypes, epigenetic changes (DNA methylation (bisulfite method) 
and histone modifications) and DNA/RNA-protein interactions (DNA chip, RIP chip, 
and cross-linking and immunoprecipitation analysis (CLIP analysis)) in biological 
samples (Bunnik and Le Roch 2013). Even though the microarrays are comparatively 
inexpensive, it has limitations like background due to cross-hybridisation, prior 
knowledge about the genome sequence and lower dynamic range of the signal and 
requires complex normalization methods to compare different experiments.

11.6  Next-Generation Sequencing Technology 
and Functional Bioinformatics

Next-generation sequencing (NGS), on the other hand, does not need prior knowl-
edge about the genome, and it is used to analyse DNA and RNA samples with a 
single nucleotide resolution. It is very easy to study alternatively spliced transcripts, 
allelic gene variants and single nucleotide polymorphisms (SNPs) with a higher 
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dynamic range of the signal. Furthermore, NGS has higher reproducibility and 
needs less DNA/RNA concentration (nanograms) compared to the microarrays. 
RNA sequencing (RNAseq) is one of the applications of NGS to cDNA molecules. 
This is obtained by reverse transcription from RNA, to get information about the 
RNA content of a sample. Thus, RNAseq is the set of experimental procedures that 
generate cDNA molecules derived from RNA molecules, followed by sequencing 
library construction and massively parallel deep sequencing (Wirka et  al. 2018). 
RNAseq is also used to study differential gene expression, alternative splicing 
events, allele-specific expression, expression quantitative trait loci analysis and 
fusion transcript detection (Wirka et al. 2018). In addition, single cells isolated by 
fluorescence-activated cell sorting (FACS) or magnetic-associated cell sorting 
(MACS) and other methods can be analysed by RNAseq (single-cell transcrip-
tomics) to study differential gene expression, unique cellular processes, cellular 
diversity and heterogeneity in regenerative medicine, immunology, neurobiology 
and cardiovascular diseases (Wirka et al. 2018).

11.7  An Overview of Metanalysis Using Functional 
Bioinformatics Tools and Databases

Meta-analysis is a subarea of functional genomics where data derived from previous 
experiments may either be analyzed alone or combined with new data to create 
statistically robust models. The raw as well as processed data deposited in the func-
tional genomics databases like Gene Expression Omnibus (GEO) (Fig.  11.8), 
ArrayExpress (AE) (Fig.  11.9), etc. can be used for meta-analyses of the high- 
throughput microarray and NGS data. For example, raw CEL files deposited in the 
GEO for a specific set of experiments can be analysed using Transcriptome Analysis 
Console (TAC) software, available for free download at the Thermo Fisher Scientific 
website. Similarly, several open source software and online resources such as 
GenePattern (Fig. 11.10) and ArrayAnalysis (Fig. 11.11) are available for the analy-
sis of microarray data. On the other hand, commercial software such as GeneSpring 
(Agilent, USA), Partek Genomic Suite (Partek Inc., USA), etc. can be used for the 
analysis of microarray and RNAseq datasets. The differentially expressed genes can 
be analysed using free online databases such as DAVID for functional annotation 
and pathway enrichment analysis or using commercially available software such as 
IPA and Pathway Studio for the identification of differentially regulated pathways, 
gene networks, biological and toxicological functions, upstream regulators, etc. 
Furthermore, the role of a specific gene or a group of genes (up to 200) in a disease 
can be explored using the Open Targets target validation (Koscielny et al. 2017) 
database (https://www.targetvalidation.org) (Fig. 11.12), and the potential genetic 
variation and tissue expression can be further explored using the Genotype-Tissue 
Expression (GTEx) (Consortium 2013; Carithers and Moore 2015; Keen and Moore 
2015; Lockhart et al. 2018; Siminoff et al. 2018) online portal (https://www.gtex-
portal.org) (Fig.  11.13). The regulatory elements, as well as the chromosomal 
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Fig. 11.8 Gene Expression Omnibus (GEO) web interface (https://www.ncbi.nlm.nih.gov/geo)

Fig. 11.9 Array express web interface (https://www.ebi.ac.uk/arrayexpress)
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Fig. 11.10 Gene pattern web interface. GenePattern provides an array of tools (https://software.
broadinstitute.org/cancer/software/genepattern) for the analysis of RNA-seq and microarray data, 
copy number variation, network analysis etc.

Fig. 11.11 Array analysis web interface. Array analysis web interface provides tools (http://www.
arrayanalysis.org) for the analysis gene expression data, statistical and pathway analyses
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Fig. 11.12 The open targets database. The open targets is an online tool (https://www.targetvali-
dation.org) for uncovering potential therapeutic targets and the association between these targets 
and an array of human diseases. Open Targets Tool can be used to explore the DEGs in a particular 
microarray or NGS experiment for the potential association with health and disease

Fig. 11.13 Gene type-tissue expression (GTEx) web interface. GTEx is an online database 
(https://www.gtexportal.org) for finding the potential genetic variation and tissue expression of 
various genes in health and disease
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Fig. 11.14 ENCODE-encyclopedia of DNA elements database. ENCODE is an online database 
(https://www.encodeproject.org) to unravel the regulatory elements at the protein and RNA level 
in health and disease

Fig. 11.15 University of California Santa Cruz (UCSC) Genome browser web interface (https://
genome.ucsc.edu/)
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location of a particular gene, can be elucidated in detail using the Encyclopedia of 
DNA Elements (ENCODE) database (Elnitski et al. 2007; Gerstein 2012; Lussier 
et al. 2013; Park et al. 2012; Rosenbloom et al. 2013; Ruau et al. 2013; Sloan et al. 
2016; Wang et al. 2013) (https://www.encodeproject.org) (Fig. 11.14) and UCSC 
Genome Browser (https://genome.ucsc.edu/), respectively (Rosenbloom et al. 2013; 
Lee 2013; An et al. 2015; Casper et al. 2018; Hung and Weng 2016; Mangan et al. 
2014; Speir et al. 2016; Tyner et al. 2017) (Fig. 11.15).

11.8  Conclusions

The type of techniques and the software tools used for the data analysis in func-
tional genomics depend on the scale and objectives of the experiments. The analysis 
of the complex functional genomics data further depends on various factors such as 
the research funding and the availability of trained bioinformaticians. The research 
funding is necessary to purchase commercially available robust software and hard-
ware and hire bioinformaticians with expertise in basic programming skills to uti-
lize the enormous wealth of free and open software tools such as R and Bioconductor 
for the in-depth analysis of high-throughput functional genomics data. Besides, 
having a high-performance computing (HPC) facility in the universities and research 
institutes will be very convenient for the robust analysis and storage of a large 
amount of data generated from functional bioinformatics analysis.
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12.1  Introduction to Biological Networks

The biology of organisms is complex and driven by the interplay of genes, proteins, 
small molecules, metabolites, and nucleic acids. To understand the biological sys-
tem, it is important to interpret these interactions. As the genetic code suggests, 
DNA is transcribed to RNA, and then RNA is translated to proteins (Fig. 12.1), 
depending on the coding potential of mRNAs. The fundamental objective of sys-
tems biology is to comprehend the complete biological system by elucidating the 
behavior of all components and their interactions.

Over the years, the huge volume of data has been generated by various high- 
throughput techniques like next-generation sequencing, microarrays, and mass 
spectrometry to understand the molecular mechanism behind specific diseased 
state. These techniques provide the expression profiles of proteins and other genomic 
information for a biological system in one or the other format. However, interpreta-
tion of this complex and multidimensional data is a great challenge. In this chapter, 
we tried to elaborate on the data types from such high-throughput technologies, 
giving details about the methodologies and software to extract valuable and legible 
information from such complex data. Network analysis can be one of the promising 
approaches to address this issue and understand the biology behind the myriad of 
mechanisms and biological processes.

Fig. 12.1 The central dogma of biology. DNA is transcribed to RNA, and RNA is translated to 
proteins, which are the protagonist in biological systems
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12.2  Types of Biological Networks

Biological networks are the mathematical representation of interactions between 
different types of molecules in a biological system. There are different types of 
biological networks as described below.

12.2.1  Protein-Protein Interaction Networks (PPIN)

The most important biochemical molecule in the organism is DNA, which stores the 
genetic information. The central dogma quotes that information from DNA is trans-
ferred to RNA and then from RNA to proteins (Fig.  12.1). However, the theory 
quoted by Beadle and Tatum (Beadle and Tatum 1941) about one gene-one enzyme- 
one function theory has come a long way. Now the biological processes are more 
complex, where proteins serve as the major molecule guiding a specific biological 
pathway. Proteins are long chains of amino acids, which are folded in a particular 
configuration. It is this specific configuration that enables a protein to physically 
interact with other proteins to form protein complexes and serve in downstream 
processes. Since proteins play a principal role in determining the molecular mecha-
nisms and cellular responses, understanding the protein interaction networks is 
becoming a salient subject in research. Compiling the dense omics data from high- 
throughput techniques into meaningful biological networks is important to under-
stand the cellular functions in a normal and diseased condition of the organism. This 
knowledge can further be translated into effective diagnostic strategies.

The reason behind the formation of protein complexes is still enigmatic. Proteins 
are folded in a specific configuration, which allows them to interact with other pro-
teins via domains. Protein domains are the small conserved sequence of amino 
acids. These domains can function independently of the chain of protein and inter-
act with other proteins to trigger biochemical processes like posttranslational modi-
fication, e.g., phosphorylation, glycosylation, etc. In one way, functional domains 
bind to other domains via protein interfaces to initiate a cellular response, e.g., 
interaction between Ras and its GTPase activating protein Ras-GAP, leading to a 
signaling process (Bader et  al. 2008). Such type of interaction has high binding 
affinity and stability in lower volumes. In another way, domains bind to a stretch of 
amino acid sequence (3–10 in length) called motifs, present in the disordered region 
of a protein. For example, PDZ domain binds to C-terminus motifs of interacting 
proteins. The folds in the protein tertiary structure create active sites or catalytic 
domains, which interact with other proteins having similar conformations to initiate 
an enzymatic reaction (an induced-fit model). This model was proposed to be a 
lock-and-key model (Alberts et al. 2002), where the enzyme and substrate physi-
cally interact with each other to stimulate a biochemical reaction. Further, protein 
interactions in cell signaling pathways help in understanding cellular transports and 
interconnected modules in a biological process, e.g., p53 pathway.
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12.2.1.1  Structure of Protein-Protein Interaction (PPI) Networks

PPI network is an organization of functional modules that comprises of a set of 
proteins having similar functions. The biological process can be interpreted as a 
modular network where proteins in a module are densely connected with each other 
sharing a similar function. Proteins are represented as “nodes” in the PPIN. Some 
proteins in the network have more interactions than other proteins, and these are 
called hubs. These nodes have very few interactions outside the module (Yook et al. 
2004). PPIN are scale-free networks (Albert 2005). Hubs play a centralized role in 
scale-free networks and are classified as “party hubs” and “date hubs” (Han et al. 
2004). Party hubs function inside the module and bind to interacting partners simul-
taneously, while date hubs bridge different modules and bind to interacting partners 
in different time and locations.

Network topology includes modularity and hub-oriented structure. There are 
four elements which define network topologies: (i) average degree (K) which can be 
calculated as degree distribution P(k), (ii) clustering coefficient (C) calculated as 
degree distribution of cluster coefficients C(k), (iii) average path length (L) calcu-
lated as shortest path distribution SP(i), and (iv) diameter (D) calculated as topologi-
cal coefficient distribution TC(k). This concept is further explained in the chapter.

To understand the biochemical networks in a particular species, condition, or 
biological state, scientists are trying to merge the expression data from the myriad 
of experimental and computational techniques with the existing networks. For 
example, when expression data of each phase of yeast cell cycle was merged with 
PPIN in yeast cell cycle, most proteins were expressed continuously and found in 
the PPIN in each cell cycle, but there were some proteins which are expressed in a 
specific cell cycle phase and thus present in a PPIN of that phase (Batada et  al. 
2006). This is how computational algorithms are making the understanding of bio-
logical systems in different conditions (species, diseases, drug treatments) much 
easier than in earlier times. We can translate these results into therapeutic advance-
ments in biomedical science.

12.2.2  Disease-Gene Interaction Networks

A disease is caused by the malfunctioning of any crucial biomolecule of an organ-
ism which can be a gene, protein, metabolite, or some unwanted genetic interac-
tions, leading to the structural and functional aberration in the organisms. The 
genes, proteins, and other cellular components carry out their biological function in 
a complex network. With the advent of genomic sequencing and large-scale pro-
teomics techniques, abundant genetic information is now available to build interac-
tomes (biological networks). These biological networks help in understanding the 
pathophysiology of a specific disease and lead to a better understanding of the dis-
ease pharmacokinetics. Also, new disease-specific genes are identified which play 
an important role in disease prognosis.
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12.2.2.1  Structure of Disease-Gene Interaction Networks

The important property of molecular networks is that they are dynamic. These net-
works change with space and time to adapt to different biological conditions. Hence 
this property of networks can be used to identify disease progression and also prog-
nostic pathways specific for that disease.

Infection or disease progression occurs mainly due to molecular interactions. 
During host-pathogen interactions, host proteins interact with pathogen’s proteins 
to initiate aberrated pathways. Such networks help researchers in understanding the 
mechanisms by which pathogens can attack the hosts. These networks are scale-free 
following the power law.

Recently, a research on human disease network (Goh et  al. 2007) has given 
insight on how diseases are connected to each other through genes associated with 
them. The diseases are connected to their genes in which the associated mutation 
was found. This network is called “diseasome.” One genetic mutation can be associ-
ated with several diseases. This resulted in a bipartite graph.

Diseases are also connected to each other if they have a common linked gene 
with a mutation, thus leading to human disease network (HDN). Genes are also con-
nected to each other if they are found in the same disorder, thus resulting in disease- 
gene network (DGN) (Fig. 12.2).

12.2.3  Metabolic Networks

Metabolism is a complex association of metabolic reactions involving substrate, prod-
ucts, molecules, compounds, and cofactors. In general, metabolic reactions are revers-
ible reactions, and they interact with each other, i.e., a product of one reaction can be the 
reactant of other reaction. The network of these metabolic reactions is called a meta-
bolic network. An example of the metabolic network is the glycolysis process in humans.

12.2.3.1  Structure of Metabolic Networks

Metabolic pathways consist of enzymes, main substances, and co-substances. Main 
substances are metabolites, and co-substances are molecules like ATP, NADPH, etc., 
which help in transferring electrons. Metabolic networks have unique properties dif-
ferent from other networks because of (a) conservation constraints at each node and 
(b) the representation where nodes are metabolites and links are reactions catalyzed 
by specific gene products. This representation is very different from PPIN, where 
nodes are gene products and links are interactions. Also, a node in the metabolic 
network cannot be deleted by genetic techniques but links. A node in PPIN can be 
deleted using different molecular techniques, but it can result in a lethal phenotype. 
Metabolic networks have flux distribution with average path length longer, and their 
functional state does not have scale-free characteristics (Arita 2004).
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The metabolic networks can be of three types:

 (a) Simplified metabolic network: A network of enzymes, reactions, and main sub-
stances but not co-substances (Fig. 12.3).

 (b) Simplified metabolite network: A network of metabolites only. This kind of net-
work is not always directed, and the metabolites are not directly connected to 
each other, but such type of interaction can be obtained from correlation analy-
sis (Fig. 12.4).

 (c) Enzyme network: A network of enzymes only. This kind of network can be 
obtained from PPIN (Fig. 12.5).

Fig. 12.2 (a) Human disease network (HDN): Different types of disease nodes are connected to 
each other if they share a common mutated gene. (b) The diseasome: The set of diseases are con-
nected to the associated mutation in a gene. Genes are green in color while disease nodes are in 
orange color. (c) The disease gene network (DGN): The genes are connected to each other if they 
are associated with the same disorder
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Fig. 12.3 Simplified 
metabolic network. The 
circles represent 
metabolites and the 
triangles are enzymes

Fig. 12.4 Simplified 
metabolite network. The 
circles represent the 
metabolites

Fig. 12.5 Enzyme 
network. The triangles 
represent the enzymes
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12.2.4  Gene Regulatory Networks

Gene regulation is the control of gene expression and thus the synthesis of proteins 
at transcription as well as translational level. The biological system is hardwired by 
the explicitly defined gene regulatory codes that control transcription as well as 
translation of the gene in a spatial and temporal manner. These control systems con-
sist of transcription factors (TFs), signaling molecules, microRNAs, long noncoding 
RNAs, and epigenetic modulators. The molecules like TFs are cis-regulatory mod-
ules, which control the expression of the neighboring gene. Small RNAs like miR-
NAs control protein synthesis at the translation levels. Epigenetic modulators control 
the protein activity. Such kind of association of genes with its regulatory elements 
forms a gene regulatory network (GRN). GRNs include feedback, feed- forward, and 
cross-regulatory loops which define the regulation of gene at various levels.

12.2.4.1  Structure of Gene Regulatory Network

GRNs consist of many sub-circuits like signal transduction sub-circuit, metabolic 
reaction sub-circuit, and protein-protein interaction sub-circuits. Also, there can be 
a sub-circuit where TFs can regulate the expression of regulatory molecules like 
miRNAs. These sub-circuits connect to each other along with gene regulatory mol-
ecules to design a GRN.

GRNs are used to study the rationale behind the differential expressed genes in 
various diseased states and also help drug designing. An example of GRN is depicted 
in Fig.  12.6 where TFs are regulating the genes, which are in turn regulated by 
miRNAs.

12.2.5  Gene Co-expression Networks

A gene co-expression network is a kind of undirected graph where nodes (genes) 
are linked to each other on the basis of similarity in expression patterns (co- 
expression) under various experimental conditions. Gene co-expression network 

gene

miRNA

TF

Fig. 12.6 Gene regulatory 
network
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analysis helps in the simultaneous identification and grouping of genes with similar 
expression profiles. This analysis is of biological importance because co-expressed 
genes are regulated by the same transcription factors, functionally related or 
involved in same biological pathway(s). This kind of networks is built using expres-
sion data generated from high-throughput techniques such as microarray and 
RNA-Seq.

The co-expression network construction involves two steps:

 1. Co-expression/expression relatedness measure calculation
 2. Significant threshold selection

12.2.5.1  Co-expression Measure Calculation

The expression values of a gene for different samples are generally log2 transformed 
before co-expression measure calculation in order to scale the values to the same 
dynamic range. The following are four measures used for co-expression measure 
(Weirauch 2011) calculation between genes:

• Pearson’s correlation coefficient: This measure is widely used for calculating 
expression similarity among genes for gene co-expression network construction. 
It gauges the inclination of two vectors to increment or abatement together, ren-
dering a measure of their general relationship. Its value varies from −1 to 1 
where absolute values near to 1 represent strong correlation. The positive values 
represent positive correlation, i.e., activation mechanism where a gene expres-
sion value is directly proportional to the expression value of other co-expressed 
gene and vice versa. When the relation between expression values of co-
expressed genes is inverse, it represents the inhibition mechanism, and they will 
have negative correlation value. Assuming linear correlation, normally distrib-
uted values and being sensitive to outliers are some of the drawbacks of the 
Pearson correlation measure.

• Mutual Information: It describes nonlinear relations between genes, which mea-
sure the similarity between two genes based on their relations with other genes.

• Spearman’s rank correlation coefficient: It is the nonparametric version of 
Pearson’s correlation which is calculated for the ranks of gene expression values 
in a gene expression matrix.

• Euclidean distance: To calculate the geometric distance between gene pairs, both 
positive and negative expression values are considered. It is not suitable when the 
absolute expression values of related genes are highly varying.

12.2.5.2  Threshold Selection

After calculating co-expression measures between all pairs of genes, a cutoff is 
imposed for selecting the gene pairs that should be connected in the network. 
Several methods can be used for selecting a threshold for gene co-expression 
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network construction, for example, weighted gene co-expression network analy-
sis (WGCNA) package which follows a power-law distribution approach for 
threshold selection.

12.2.5.3  WGCNA (Weighted Gene Co-expression Network Analysis)

It is a systems biology approach, which illustrates the correlation gene patterns 
across a series of microarray samples. It has been widely used in the genomic appli-
cations. It can be used to define modules of highly correlated genes, for summariz-
ing such modules based on intra-modular hub genes and for calculating module 
membership for network nodes, i.e., genes, to study the relationships between co- 
expressed genes and external sample traits. It can also be used to compare the net-
work topology of different networks. WGCNA (Langfelder and Horvath 2008) can 
be used as:

 1. Data reduction technique
 2. Clustering method
 3. Feature selection method
 4. Framework for integrating genomic data based on expression value.

The WGCNA pipeline is shown in Fig. 12.7.

Fig. 12.7 WGCNA pipeline
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12.3  Network Measures

A complex biological system can be considered as networks wherein components 
within a complex system can be represented as nodes and are connected through 
their interactions, also known as edges. It enables analysis of the network’s topol-
ogy, which gives insight into molecular mechanism operating within a cell under 
given condition. Network topology considers knowledge about the global and local 
properties of the network. Graph-theoretic network analysis can be used to measure 
the topological properties quantitatively (Ma’ayan 2011). Centrality indices are one 
of the measures which tell about the important nodes or edges, for the connectivity 
or the information flow within the network. The following are some of the centrality 
measures which can be calculated to define local properties of a network:

 1. Degree centrality: It tells about the number of links for each node. The nodes 
with the highest degree may act as a hub, regulating multiple other nodes in the 
network.

 2. Node betweenness centrality: It tells about the number of shortest paths between 
all possible pairs of nodes. The nodes with high betweenness centrality lie on 
communication paths and can control information flow.

 3. Closeness centrality: It is the average shortest path from one node to all other 
nodes. It estimates how fast the flow of information would be through a given 
node to other nodes.

 4. Eigenvector centrality: It accesses the closeness to highly connected nodes.
 5. Edge betweenness centrality: It is the number of shortest paths that go through 

an edge among all possible shortest paths between all the pairs of nodes.

The following are some of the global properties of a network:

 1. Degree distribution: It is the probability distribution of degrees over the whole 
network. For most of the biological networks, this distribution follows power- 
law, giving scale-free architecture to the network. It makes network stable and 
robust to random failures.

 2. Characteristic path length: It represents the average shortest path between all 
pairs of nodes.

 3. Clustering coefficient: It is the local density of interactions by measuring the 
connectivity of neighbors for each node averaged over the entire network. It 
demonstrates the tendency of the nodes to cluster together. High clustering coef-
ficient means the presence of communities in a network. The communities are 
very important in the biological network as they represent functional modules or 
protein complexes working together to achieve a biological process.
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12.4  Gene Ontology

The gene ontology is a cooperative attempt to bring together a consolidated descrip-
tion of gene and gene product for all organisms. It can be a promising approach to 
decipher key components from complex biological networks and helps in organiz-
ing the biological networks in a meaningful way to improve performance and bio-
logical interpretability.

Comparative genomics has apparently shown that a vast portion of the genes 
specifying the major biological functions are common to all organisms. Information 
of the biological role of such common proteins in one organism can often be 
exchanged with other organisms. The objective of the Gene Ontology Consortium 
is to deliver a dynamic, controlled vocabulary that can be connected to all organisms 
even as information of gene and protein roles in cells is gathering and evolving. The 
undertaking started in 1998 as a coordinated effort between three model organism 
databases, the FlyBase (Drosophila), the Saccharomyces Genome Database (SGD), 
and the Mouse Genome Database (MGD). The GO Consortium (GOC) has since 
developed to join numerous databases, including a few of the world’s significant 
vaults for the plant, animals, and microbial genomes (Reference Genome Group of 
the Gene Ontology Consortium 2009).

There are three separate aspects to this effort:

 1. The development and maintenance of the ontologies themselves
 2. The annotation of gene products, which entails making associations between the 

ontologies and the genes and gene products in the collaborating databases
 3. The development of tools that facilitate the creation, maintenance and use of 

ontologies

The GO project has created three organized ontologies that associate gene prod-
ucts with their biological processes, cellular components, and molecular functions 
in a species-independent manner (Botstein et al. 2000).

• Cellular component: The location in the cell where a gene product is functional. 
In most of the situation, annotations connecting gene product with cellular com-
ponent types are made on the basis of a direct observation of an instance of the 
cellular component in a microscope. Cellular component incorporates terms like 
“ribosome” or “proteasome,” specifying where different gene products would be 
found.

• Molecular function: A molecular function term is an enduring potential of a gene 
product to act in a certain way or in other words the biochemical activity (includ-
ing specific binding to ligands or structures) of a gene product. This definition 
likewise applies to the ability that a gene product conveys as a potential. It por-
trays just what is done without indicating where or when the occasion really 
happens. For example, glucose transport, regulation of cell death, etc.
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• Biological process: It defines what the gene or gene product contributes. A pro-
cess is defined by means of at least one requested gathering of molecular func-
tions for example, “cell growth and maintenance”, “signal transduction”, “cAMP 
biosynthesis”, etc.

Gene ontology (GO) has a graph-like structure where GO terms are nodes and 
relationships among them are links between nodes. The structure is loosely hierar-
chical having a parent-child relationship between nodes. Child node terms are more 
specialized than their parent node terms, but a child may have more than one parent 
term. For example, “integral component of external side of plasma membrane” is a 
child of the “integral component of plasma membrane” and “intrinsic component of 
external side of plasma membrane” (Fig. 12.8).

GO terms are designed with a unique identifier and term name, for example, 
GO:0015758~ glucose transport. The unique identifier is a zero-padded seven-digit 
identifier prefixed by “GO:”. The link between two nodes represents the relation-
ship between them. For example, in Fig. 12.9, GO term “GO:1900117” has two 
types of relationship with parent nodes, i.e., “is a” and “regulates” which means 
GO:1900117 is a kind of regulation of apoptotic process (GO:0042981) and it regu-
lates execution phase of apoptosis (GO:0097194).

The ontologies are dynamic, as in they exist as a network that is changed as more 
data gathers yet have adequate uniqueness and accuracy with the goal that databases 
in light of the ontologies can consequently be refreshed as the ontologies develop. 
The ontologies are adaptable in another way, so they can reflect the numerous 
 distinctions in the biology of the assorted life forms, such as the breakdown of the 
nucleus during mitosis. The GO vocabulary is intended to be species-impartial and 
incorporates terms relevant to prokaryotes and eukaryotes and single and multicel-
lular organisms.

Fig. 12.8 Relationship between GO terms
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12.4.1  Applications of Gene Ontology

The gene ontology annotation is most widely utilized for deciphering large-scale 
“omics” data. Gene ontology enrichment analysis is one of the uses of GO annota-
tion which helps in finding the significant clusters of genes associated with biologi-
cal processes and thus reduce the bulk amount of data to the much smaller number 
of biological function getting altered under different experimental conditions.

12.5  GO Annotation

GO annotation is a link between the gene product and what that gene product can 
do, which molecular and biological processes it adds to, and where in the cell it is 
functioning. The GO annotation focuses on the identification of functional activities 
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of a gene or a protein. GO annotation is principally divided into two parts: first, a 
link between the gene product and a representative GO term and second is an evi-
dence to establish that link (Weirauch 2011). The annotation data in the GO data-
base is contributed by members of the GO Consortium (GOC); more than 15 major 
contributing groups are actively working for GOC (Blake 2013). GOC is a dynamic 
ontology-based resource that contains the most updated and exhaustive set of anno-
tations available in the literature. Keen utilization of GO annotation assures the best 
result in advancing biological research. GO annotation process follows a basic 
three-step paradigm in which:

 1. Relevant experimental data is being identified from the biomedical literature.
 2. Correlation of gene product with GO terms.
 3. Finally, annotation quality control and refinement process are employed to 

ensure that the annotation has a correct formal structure.

GO annotation data file provided to GOC consists of 15 columns (Fig. 12.10). To 
fully comprehend the GO annotation file, a few important terms are worth to 
discuss:

Fig. 12.10 Annotation format provided by the GO consortium
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An annotation is a process of assigning GO terms to the gene product. These 
assignments are made based on the conclusion drawn from experiments.

A gene product is an output generated from RNA or protein molecule that has 
some defined role in the biology of an organism.

A molecular function encompasses activities of a gene product such as catalytic 
or binding activities, influencing at the molecular level.

A biological process is a recognized sequence of molecular events performed by 
one or more ordered assemblies of molecular functions. For example, the progres-
sion of the brain development over time would be an instance of the biological func-
tion brain development.

A cellular component is a part of a cell where a gene product is active.
Curation is the formulation of annotation on the basis of the gene and gene prod-

uct information from experimental observations.
An evidence code is a three-letter code that specifies the type of evidence identified 

from literature to support the association between gene and gene product. There are 
21 (Hill et al. 2008) evidence (Table 12.1) codes classified broadly into five groups.

Table 12.1 Evidence codes classification

Category Evidence codes

Experimental Evidence codes: 
literature cited indicates that there is 
evidence from an experiment directly 
supporting an association between 
gene and gene product

Inferred from Experiment (EXP)
Inferred from Direct Assay (IDA)
Inferred from Physical Interaction (IPI)
Inferred from Mutant Phenotype (IMP)
Inferred from Genetic Interaction (IGI)
Inferred from Expression Pattern (IEP)

Computational Analysis evidence 
codes: literature cited contains 
observations from in silico analysis

Inferred from Sequence or structural Similarity (ISS)
Inferred from Sequence Orthology (ISO)
Inferred from Sequence Alignment (ISA)
Inferred from Sequence Model (ISM)
Inferred from Genomic Context (IGC)
Inferred from Biological aspect of Ancestor (IBA)
Inferred from Biological aspect of Descendant (IBD)
Inferred from Key Residues (IKR)
Inferred from Rapid Divergence(IRD)
Inferred from Reviewed Computational Analysis 
(RCA)

Author statement evidence codes: 
annotation was made on the basis of 
declarations made by the author(s) in 
the literature

Traceable Author Statement (TAS)
Non-traceable Author Statement (NAS)

Curator statement evidence codes: 
when annotation does not support any 
direct evidence

Inferred by Curator (IC)
No biological Data available (ND) evidence code

Electronic Annotation evidence code: 
specifies that annotation was assigned 
by automated methods, without curator

Inferred from Electronic Annotation (IEA)
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12.5.1  Utilities for GO Annotation

The gene ontology (GO) provides core biological knowledge representation for 
modern biologists, whether computationally or experimentally based. It has become 
an extremely useful tool for the analysis of OMICS data and structuring of biologi-
cal knowledge. With the aim of high-quality annotation and easy access to GO 
annotation database, a number of online tools are available, such as QuickGO (Binns 
et  al. 2009), which have been developed at the EBI, and AmiGO (Carbon et  al. 
2008), which is developed by the GO Consortium.

12.5.1.1  Viewing GO Terms Using QuickGO

A responsive web-based tool that allows easy access to GO annotation. QuickGO 
can be queried online at https://www.ebi.ac.uk/QuickGO/ or can be downloaded 
freely from http://www.ebi.ac.uk/QuickGO/installation.html.

The QuickGO home page (Fig. 12.11) provides a query box (Fig. 12.11 (A)) to 
start searching for GO annotation. QuickGO takes a wide range of gene identifiers 
and symbol for annotation retrieval, for example, NCBI Gene IDs, RefSeq acces-
sions, Ensembl Ids, UniProtKB accessions, InterPro IDs, Enzyme Commission 
(EC) numbers, and GO IDs.

A search for the keyword “apoptosis” retrieves all terms where “apoptosis” is 
present in the term name and gene product (Fig. 12.12). Here search term “apopto-
sis” is underlined in red color, and matched terms are shown in green color.

Fig. 12.11 QuickGO home page
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Fig. 12.12 QuickGO: search for keyword “apoptosis”

Clicking on the GO term (e.g., GO:0097194) redirect user to Term Information 
Page (Fig. 12.13), providing complete information for the selected GO term.

12.5.1.2  Viewing GO Terms Using AmiGO

AmiGO is another web-based application provided by the Gene Ontology 
Consortium for identification and visualization of GO terms related to genes. 
AmiGO can be accessed from GOC (http://amigo.geneontology.org) or can be 
downloaded (http://sourceforge.net/projects/geneontology/) to use as the stand- 
alone application.
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The AmiGO home page (Fig. 12.14a) provides a search box (Fig. 12.14a (A)) to 
start searching for GO annotation. AmiGO takes a wide range of gene identifiers and 
symbol for GO annotation retrieval. Search keyword “apoptosis” is used to retrieve 
all terms where “apoptosis” is present in the GO terms, GO annotation, and gene 
products (Fig. 12.14b).

Clicking on “Ontology” will return all GO IDs containing “apoptosis” keyword 
in gene ontology term, synonym, or GO definition (Fig. 12.15).

Fig. 12.13 QuickGO: GO term information page view
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12.5.1.3  The Database for Annotation, Visualization, and Integrated 
Discovery (DAVID)

DAVID (Huang et al. 2008) provides a comprehensive set of functional annotation 
tools for investigators to comprehend the biological meaning behind large list of 
gene/protein lists generated from a variety of high-throughput genomic experi-
ments. In this tutorial, given a list of differentially expressed genes, we will use 
DAVID to identify the enriched GO terms, such that we can have a clue on the role 
of genes played in the underlying biological processes.

Fig. 12.14 AmiGO home page and “apoptosis” keyword search page
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Fig. 12.15 AmiGO: Ontology term information page

Perform Function Annotation Test

 (a) Open the server DAVID 6.8 (https://david.ncifcrf.gov/).
 (b) Click “Start Analysis” tab (A) as shown in Fig. 12.16.
 (c) Submit a gene list to DAVID using input interface (Fig.  12.17). Paste the 

Affymetrix_geneID list from (A) to the text box (B), or load a text file contain-
ing gene IDs using browse option (C). Select the appropriate gene identifier 
type for input gene IDs using (D). User can also convert gene IDs to other for-
mats using DAVID “Gene ID conversion” tool (E). Specify input IDs as gene 
list (i.e., genes to be analyzed) or as background genes (i.e., gene population 
background) at (F). Finally, click “Submit” (G).

 (d) After job submission, the progress bar at the top shows job progress. If >20% of 
gene_identifiers are ambiguous or unrecognized, user will be redirected auto-
matically to “DAVID Gene ID Conversion Tool” Fig. 12.18 (D). Implicitly, the 
background is set up to the species that contain majority of genes in the user’s 
input list (Fig. 12.18 (B)). User can change background using “Background” 
section as in Fig. 12.18 (A). Run “Functional Annotation chart” (Fig. 12.18 (C)) 
for functional enrichment analysis and biological knowledge base selection.

 (e) Now user needs to input what type of functional annotations are required. For 
this purpose, the user needs to deselect the “Check Defaults” tab in Fig. 12.19 
(A). Then select the GOTERM_BP_FAT (Fig. 12.19 (C)), which is the sum-
marized version of Biological Processes in the GO, by clicking (+) sign as in 
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Fig. 12.17 Gene list submission page to DAVID

Fig. 12.16 The DAVID 6.8 home page
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Fig. 12.18 Webpage to access various analytic tools/modules available in DAVID

Fig. 12.19 Layout of DAVID “Functional Annotation Chart”
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Fig. 12.19 (B). User can try other annotation categories, for example, classify-
ing genes based on pathways using KEGG database, gene-gene interactions 
identification using BIOGRID database, domain identification, etc.

 (f) Click on “Functional annotation chart” button (Fig. 12.19 (D)); a window will 
be prompted to show the results of functional enrichment test. This statistical 
test identifies the significantly enriched terms in GOTERM_BP_FAT 
 knowledgebase (Fig. 12.20 (B)). Each row represents an enriched functional 
term (Fig. 12.20 (C)) and is ordered by their significance level; the smaller the 
score (Fig. 12.20 (D)), the better is the result. User can download the complete 
annotation file from Fig. 12.20 (A).

When to and Why Use DAVID?

High-throughput techniques like next-generation sequencing and mass spectrome-
try generate a huge amount of data, which finally yield gene identifiers.

The gene identifier table can be of various types:

• If data is generated from RNA sequencing or MS experiments, these gene identi-
fiers are linked to respective expression values in a particular condition. These 
expression values can be as FPKM or RPKM units.

Fig. 12.20 DAVID: Functional annotation chart
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• These genes need to be classified according to their molecular functions, biologi-
cal processes, and cellular locations to identify the major pathways operating in 
a particular biological condition (e.g., diseased state in which sequencing was 
performed). Such classification or grouping of genes is called gene enrichment. 
Genes are also clustered based on their functional annotation. Such functional 
clustering is essential to identify genes having similar functions. Such kind of 
functional annotation and clustering can be performed using DAVID.

• Data generated from exome sequencing have gene identifiers linked to respective 
variant information (e.g., in a diseased state).

• This gene set has to functionally annotate to predict the role of respective vari-
ants associated. Also, clustering of genes will recognize the genes with polymor-
phisms, belonging to similar molecular functions. This will give new leads 
toward building hypothesis on disease pathogenesis.

12.5.1.4  STRING

STRING (Szklarczyk et al. 2016) is a web-based tool for making protein-protein 
interaction networks.

Create a PPIN Using STRING

The tutorial is for the set of proteins you have.

Step 1: You can search interaction network by clicking on “Multiple proteins” 
(Fig. 12.21 (A)) and paste a list of gene IDs into text box provided (Fig. 12.21 
(B)) or load a text file containing gene IDs using “Browse” option (Fig. 12.21 
(C)). In the organism field, you can specify organism name explicitly (e.g., Homo 
sapiens) or leave it to default as “auto-detect” (Fig. 12.21 (D)). Then click the 
search button (Fig. 12.21).

Step 2: You will be redirected to the page listing the gene symbols you have entered 
with their alias and function (Fig. 12.22). The user needs to ensure that specific 
protein of interest being queried. Then click on “Continue” button (Fig. 12.22 
(A)).

Step 3: You will be redirected to a network page (Fig. 12.23). In the protein-protein 
interaction network (Fig. 12.23 (A)), the circles represent the nodes or proteins. 
The edges represent the associations between nodes. The legend (Fig. 12.23 (B)) 
section gives information about nodes and interacting partners or edges.

Step 4: User can change the research parameters from “Setting” section (Fig. 12.24 
(A–D)).

Step 5: Visualize the Analysis section (Fig. 12.25). The Analysis section provides 
network statistics (Fig.  12.25 (A)). The functional enrichment analysis of the 
input gene set is provided in Fig. 12.25 (B). The information about the statistical 
background used for functional enrichment is also given in Fig. 12.25 (C).
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Fig. 12.22 STRING: Ensuring the correct protein identifiers are being used for PPIN 
construction

Fig. 12.21 STRING: Use multiple protein identifiers input for PPIN construction
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Step 6: Finally you can export the network files (Fig. 12.26 (A)) in different formats 
(Fig. 12.26 (B)) to analyze it further using Cytoscape or any other network visu-
alization tool(s).

12.5.1.5  Cytoscape

Cytoscape (Shannon et al. 2003) is an open source tool for visualizing biomolecular 
interaction networks, integrating functional annotations and high-throughput gene 
expression profiles into a unified conceptual framework, and identifying their 

Fig. 12.23 STRING: Network visualization
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Fig. 12.24 STRING: Change research parameters for PPIN construction

Fig. 12.25 STRING: Analysis section providing network statistics and functional enrichment 
analysis of input protein identifiers
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properties. Additional utilities are available in the form of plugins. Plugins are avail-
able for network properties and molecular profiling analyses, various layouts for 
better visualization, additional file format support, and connection with databases 
and searching in large networks. Cytoscape additionally has a JavaScript-driven 
sister venture named Cytoscape.js that can be utilized to dissect and visualize net-
works in JavaScript environments through a web browser.

Examples of Uses

Gene function prediction – examining genes (proteins) in a network context shows 
connections to sets of genes/proteins involved in the same biological process that is 
likely to function in that process (plugin for analysis: jActiveModules, PiNGO, etc.).

Detection of protein complexes/other modular structures  – protein complexes 
are groups of associated polypeptide chains whose malfunctions play a vital role in 
disease development. Complexes can perform various functions in the cell, includ-
ing dynamic signaling, and can serve as cellular machines, rigid structures, and 
posttranslational modification systems. Many disorders are consequences of 
changes in a single protein and, thus, in its set of associated partners and functional-
ity (plugin for analysis: Motif Discovery, Mclique, MCODE, PEWCC, etc.).

Fig. 12.26 STRING: Export required network files
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Identification of disease sub-networks and potential biomarkers – identification 
of disease network sub-networks that are transcriptionally active in the disease and 
also provide a rich source of biomarkers for disease classification. These suggest 
key pathway components in disease progression and provide leads for further study 
and potential therapeutic targets (plugin for analysis: PhenomeScape, PSFC, etc.).

Dynamics of a biological network – the molecular interactions in a cell vary with 
time and surrounding environmental conditions. The construction and analysis of 
dynamic molecular networks can elucidate dynamic cellular mechanisms of differ-
ent biological functions and provide a chance to understand complex diseases at the 
system level (plugin for analysis: DyNetViewer, DynNetwork, DynNet, etc.).

INPUT Type

Cytoscape can read network/pathway files written in the following formats:

• Simple interaction file (SIF or .sif format)
• Nested network format (NNF or .nnf format)
• Graph Markup Language (GML or .gml format)
• XGMML (eXtensible Graph Markup and Modeling Language)
• SBML
• BioPAX
• PSI-MI Level 1 and 2.5
• GraphML
• Delimited text
• Excel Workbook (.xls, .xlsx)
• Cytoscape.js JSON
• Cytoscape CX

The SIF format specifies nodes and interactions only, while other formats store 
additional information about network layout and allow network data exchange with 
a variety of other network programs and data sources.

Visualization

Substantial progress has been made in the field of “omics” research (e.g., genomics, 
transcriptomics, proteomics, and metabolomics), leading to a vast amount of bio-
logical data generation. In order to represent large biological data sets in an easily 
interpretable manner, this information is frequently visualized as graphs, i.e., a set 
of nodes and edges. Cytoscape assists in visual exploration and analysis of biologi-
cal network in several ways:

• Provides customize network data display using powerful visual styles.
• Helps in integrating gene expression values with the network. This can be done 

by mapping expression values to network nodes which represent the gene as 
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color, label, border thickness, etc. according to the user-defined mapping file and 
provide several layout options in two as well as three dimensions for network 
visualization, for example, edge-weighted spring-embedded layout, attribute 
circle layout, etc.

• The network manager can be utilized to manage multiple networks in a single 
session file. Easily navigate large networks through an efficient rendering engine.

Analysis

• Filter the network to select subsets of nodes and/or interactions based on the cur-
rent data. For instance, users may select nodes involved in a threshold number of 
interactions, nodes that share a particular GO annotation, or nodes whose gene 
expression levels change significantly in one or more conditions according to 
p-values loaded with the gene expression data.

• Find active sub-networks/pathway modules. The network is screened against 
gene expression data to identify connected sets of interactions, i.e., interaction 
sub-networks, whose genes show particularly high levels of differential expres-
sion. The interactions contained in each sub-network provide hypotheses for the 
regulatory and signaling interactions in control of the observed expression 
changes.

• Find clusters (highly interconnected regions) in any network loaded into 
Cytoscape. Depending on the type of network, clusters may mean different 
things. For instance, clusters in a protein-protein interaction network have been 
shown to be protein complexes and parts of pathways. Clusters in a protein simi-
larity network represent protein families.

• Plugins available for network and molecular profile analysis.

12.6  Conclusion

Complex biological networks are the reservoir for the plethora of biological infor-
mation about pathways and cellular mechanisms. This chapter summarized differ-
ent types of biological networks, methodologies to analyze such networks and 
biological relevance. These networks can provide researchers with critical informa-
tion about the pathogenesis of diseases (disease-gene networks), identification of 
drug targets (protein-protein networks, protein-ligand interaction), and biological 
pathways. Functional and pathway analysis of genes (gene ontology) determine sig-
nificant gene clusters associated with a specific biological process, molecular func-
tion or pathway. This chapter succinctly provides relevant information about the 
applications of biological networks in the molecular biology field. Our hope is that 
the tutorials provided in this chapter will guide researchers to annotate genes on 
gene products and enrich GO annotation both qualitatively and quantitatively on the 
available tools.

12 Biological Networks: Tools, Methods, and Analysis
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ESI  Electrospray Ionization
GC  Gas Chromatography
KEGG Kyoto Encyclopedia of Genes and Genomes
LC  Liquid Chromatography
MALDI Matrix-Assisted Laser Desorption and Ionization
MS  Mass Spectrometry
NMR Nuclear Magnetic Resonance Spectroscopy
OPLS-DA Orthogonal Partial Least Squares Discriminant Analysis
PCA  Principal Component Analysis
PDAC Pancreatic Ductal Adenocarcinoma
QTOF Quadrupole Time of Flight
TW-IMS Traveling Wave Ion Mobility Spectrometry

13.1  Introduction

Metabolomics is a rapidly evolving “omics” approach to systematically decode the 
complex small molecules termed as metabolites present in the biological systems 
(Bartlett and Chen 2016; Jones and Cheung 2007; Schnackenberg 2006; Tan et al. 
2016). Metabolomics is the comprehensive study of metabolites generated from the 
substrates and products of metabolism, within cells, tissues, organisms, and biologi-
cal fluids. Together, these small molecules and their interactions within a biological 
system are known as the metabolome. Metabolomics helps to get a panoramic view 
of an array of metabolites that are implicated in diverse and intricate cellular, molec-
ular, and physiological processes in living systems. Aptly, more focus has been 
attributed to the initiation and the development of metabolomics-related research in 
academic institutions, industry, and government organizations around the globe in 
the past decade. It is clearly evident by just two publications in the year 2000 to 
nearly 27,000 documents till the year 2018 in metabolomics research (Fig. 13.1). 
Investigating the metabolome is essential to understand the subtle changes in 
metabolites and the subsequent impact on molecular networks or pathways in health 
and several disease conditions. The number of publications using the integration of 
metabolomics, functional genomics, transcriptomics, and proteomics has been ever 
increasing from just 1 in the year 2001 to 1221 till the end of 2017 (Fig. 13.2).The 
rapid emergence of “systems biology” helps to integrate the massive wealth of data 
derived from these multi-omics platforms with metabolomics approach to further 
interpret or characterize the complex biological processes (Fig. 13.3).

Metabolomics is a robust method since metabolites and their concentrations 
directly reveal the ongoing biochemical reactions in the cells, tissues, organs, and 
biological fluids. Importantly, the profile of metabolites in the biological systems 
depends on both genetic and environmental factors that further influence both anab-
olism and catabolism. In fact, the metabolomics is an integral part of the central 
dogma (CD) of molecular biology (Fig. 13.4) and perfectly characterizes the molec-
ular phenotype.
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Fig. 13.1 The number of publications in metabolomics. The bibliometric analyses using PubMed 
and Scopus have shown that only two documents were published related to the metabolomics in 
the year 2000, and it has increased remarkably to 27000 till the middle of 2018
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Fig. 13.3 Integrated “multi-omics” approach in precision medicine. The rapid emergence of “sys-
tems biology” helps to integrate the massive wealth of data derived from these “multi-omics” 
platforms with metabolomics approach to further interpret or characterize the complex biological 
processes

Fig. 13.4 Metabolomics and central dogma. Metabolomics is an integral part of the central dogma 
(CD) of molecular biology
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13.2  Analytical Methods in Metabolomics

A metabolite is a small low molecular compound involved in complex metabolic 
reactions (Fig. 13.5). The metabolomics typically investigates small molecules that 
are less than 1500 daltons (Da) in molecular weight such as amino acids, lipids, 
sugars, fatty acids, phenolic compounds, etc. There are currently about 2900–3000 
common or endogenous metabolites identified in the human body participating in 
complex metabolic reactions. In order to profile these metabolites, three different 
methods are used, namely, untargeted or global method, targeted method, and imag-
ing method.

13.2.1  Untargeted or Global Metabolomics Method

Global or untargeted method determines most of the metabolites without any bias 
from the biological samples. It is the method of choice for studying the small molec-
ular or metabolic phenotypes in basic, applied, and translational research programs 
around the globe.

Fig. 13.5 Intricacy of metabolic reactions. Intricate network of metabolites as depicted by KEGG 
metabolic pathways. Metabolomics typically investigates small molecules that are less than 1500 
daltons (Da) in molecular weight such as amino acids, lipids, sugars, fatty acids, phenolic com-
pounds, etc. There are currently about 2900 to 3000 common or endogenous metabolites identified 
in the human body participating in complex metabolic reactions. (Adapted and modified from 
KEGG metabolic pathways)
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13.2.2  Targeted Metabolomics Method

The targeted method provides the analytical validation of metabolites measured 
by the global or untargeted method (Johnson et al. 2016). It quantifies the concen-
trations of a specific or defined set of metabolites implicated in a particular meta-
bolic reaction. Hence, preparation of standard curves for each metabolite of 
interest is essential for the precise quantitation in biological samples. It is mostly 
used when investigating pharmacokinetics of drugs, therapeutic outcomes, or 
genetic modifications of a protein or an enzyme implicated in health and disease 
(Johnson et al. 2016).

13.2.3  Imaging Metabolomics Method

Nanostructure imaging mass spectrometry (NIMS), desorption electrospray ioniza-
tion mass spectrometry (DESI), secondary ion mass spectrometry (SIMS), and 
matrix-assisted laser desorption ionization (MALDI) are used in imaging the loca-
tion of the metabolites in tissues (Johnson et al. 2016).

However, there is no difference in the metabolomics pipeline between the 
global and untargeted methods. The mass spectrometry-based global or untargeted 
metabolomics methods typically consist of steps such as experimental design, 
sample preparation strategy, injection of sample either direct infusion or mainly 
via gas or liquid chromatography (GC/LC), mass spectrometric (MS) analysis, 
acquisition and processing of MS data, and analysis and biological interpretation 
of MS data (Fig. 13.6).

Sample
Preparation

Strategy

Experimental
Design

Mass
Spectrometry

(MS)

Acquisition of
MS Data

Processing of
MS Data

Analysis and
Interpretation
of MS Data

Direct Infusion
or via

Chromato-
graphy

Fig. 13.6 Targeted or untargeted metabolomics methods. An overview of the mass spectrometry- 
based metabolomics pipeline. There is no difference in the metabolomics pipeline between the 
global and untargeted methods. The mass spectrometry-based global or untargeted metabolomics 
methods typically consist of steps such as experimental design, sample preparation strategy, injec-
tion of sample either direct infusion or mainly via gas or liquid chromatography (GC/LC), mass 
spectrometric (MS) analysis, acquisition and processing of MS data, and analysis and biological 
interpretation of MS data
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13.3  Experimental Design

Experimental design is very much important before the initiation of the metabolo-
mics studies. The collection of appropriate type of samples, sample size, random 
sampling (randomization), sample preparation strategies, and suitable storage of 
samples are essential  before the metabolomics analysis using  either MS or 
NMR. Importantly, identification of external as well as internal factors that affect 
the results is essential and has to be taken into consideration during the data pro-
cessing, analysis, and interpretation. This will certainly reduce error and increase 
the data reproducibility in metabolomics experiments.

13.4  Preparation of Samples for Metabolomics Experiment

The sample preparation in metabolomics involves many steps such as sample col-
lection, storage, extraction, and preparation (Fig. 13.7).

Fig. 13.7 Experimental design in metabolomics. Experimental design is very much important 
before the initiation of the metabolomics studies. The collection of appropriate type of samples 
based on the objectives of the experiments; sample size, random sampling (randomization), sample 
preparation strategies, and suitable storage of samples before the metabolomics analysis either in 
MS or NMR. Importantly, identification of external as well as internal factors that affect the results 
is essential and has to be taken into consideration during the data processing, analysis, and inter-
pretation. This will certainly reduce error and increase the data reproducibility in metabolomics 
experiments.
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13.4.1  Extraction Methods

In metabolomics, the sample extraction can be performed using solid-phase extrac-
tion, gas chromatography, and liquid chromatography.

13.4.1.1  Solid-Phase Extraction

In solid-phase extraction (SPE), the metabolites suspended in a liquid mobile phase 
are separated from other compounds based on their affinity and other physiochemi-
cal interactions with a sorbent or a solid separation media. SPE is mostly used to 
concentrate, clean up, and partially purify a sample before further clarification using 
either  gas or liquid chromatographic methods and analysis  using  either MS or 
NMR techniques (Fig. 13.8). Based on the solid separation media used, the SPE can 
be classified as normal-phase SPE, reversed-phase SPE, and ion-exchange SPE.

A recent technique termed as microextraction by packed sorbent (MEPS) is used 
for the isolation of drugs and metabolites from the biological fluids such as the 
whole blood or plasma or serum, etc. MEPS can be used for small sample volumes 
such as 10 μL. MEPS has been used in a number of latest research investigations in 
preclinical, clinical, and environmental analysis, and it also has advantages com-
pared to other extraction techniques such as solid-phase microextraction method 
(SPME) (Abdel-Rehim 2011; Ma and Ouyang 2016).

Fig. 13.8 Solid-phase extraction apparatus and a variety of column types used in the preprocess-
ing of samples in metabolomics experiments. (Image courtesy: Jeff Dahl shared through Wikipedia 
Commons by CC BY-SA 3.0 license)
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13.4.1.2  Chromatographic Methods

Several types of chromatographic methods (low, medium, or high-throughput) are 
used to separate metabolites from a mixture, and this is a key step before infusing the 
samples into MS and NMR. Gas and liquid chromatography are mostly coupled with 
MS analysis in metabolomics experiments. The separation is based on the interac-
tions of individual metabolites in a sample with the mobile phase and the stationary 
solid phase and eluted from the solid phase using their physiochemical properties. In 
high-throughput liquid chromatography (HPLC), the column with a varied width 
and length can be packed with reversed phase (RP), normal phase, and ion-exchange 
stationary phases based on the objectives of the metabolomics analysis.

13.5  Mass Spectrometry

Mass spectrometry (MS) is used to measure small molecules or metabolites that are 
injected either directly (direct infusion method) or indirectly through a coupled 
method such as chromatography. The direct infusion methods such as electrospray 
ionization (ESI), electron impact ionization (EI), quadrupole time of flight (QTOF), 
and traveling wave ion mobility spectrometry (TW-IMS) as in Synapt G2 MS sys-
tem (Waters Corporation, USA) are being used in metabolomics methods. On the 
other hand, a coupled gas (GC) or liquid chromatography (LC) or capillary electro-
phoresis (CE) can be used to isolate or purify metabolites in samples before infusing 
(indirect infusion method) into the MS system. The coupled techniques with MS, 
such as LC-MS/MS in RPLC or HILIC mode, GC-MS/MS, and CE-MS/MS, are 
especially used in targeted analysis (Drouin et al. 2017).

Basically, after infusion (direct or indirect), the metabolites in the sample are 
ionized using an ion source before the detection of metabolites in the mass detector 
(Fig. 13.9). The resulting MS data consists of mass-to-charge (m/z), time, and inten-
sity triplets giving the mass, the strength of the ion beam, and the time of detection 
in the MS for each ion.

 (a) Sample Inlet: The samples are injected through the sample inlet into the MS 
either direct infusion without prior separation of metabolites or coupled with a 
chromatographic system for the purification of samples, before entering the ion 
source. Importantly, the choice of reconstitution of samples using solvents, 
such as water, methanol, etc., after SPE or MEPS or any other extraction pro-
cess significantly influences the number of metabolites identified using MS sys-
tem (Lindahl et al. 2017a).

 (b) Ionization Source: The sample is ionized using a high-energy electron beam 
into cations by the loss of an electron in vacuum. Ionization methods can be 
classified into hard ionization and soft ionization. In hard ionization method, 
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such as electron impact ionization (EI), the high-energy electrons interact with 
the metabolites to generate heavy fragments. In contrast, soft ionization, such as 
electrospray ionization (ESI) as well as matrix-assisted laser desorption and 
ionization (MALDI) (a solid-phase technique that uses laser for ionization), 
ionizes metabolites and produces only few fragments. John Fenn and Koichi 
Tanaka won a share of the 2002 Nobel Prize in Chemistry for their discovery of 
soft ionization methods, ESI and MALDI, respectively (Cook 2002).

When a high-energy electron beam hits or collides with a molecule (M), it 
ionizes it to generate a molecular ion (M+). In addition, neutral pieces and 
smaller fragment ions are generated from the fragmentation of M+ ion due to 
residual energy. The molecular ion is a radical cation, but the fragment ions may 
either be radical cations or carbocations, depending on the nature of the neutral 
fragment. The MS spectrum of hexanoylcarnitine (C13H25NO4 molecular 
weight: 259.3419) showing the molecular ion (M+ 260.1) is given as an exam-
ple in Fig. 13.10.

 (c) Mass Analyzer: The ions produced in the ionizer are separated based on their 
m/z ratio in the mass analyzer where the m/z ration is equal to the molecular 
mass of the ion (charge is mostly equal to 1). All types of MS utilize the mass 
and electrical charge properties of ions but the separation techniques might 
vary.

 (d) Detector: The ions separated based on the m/z ratio in the mass analyzer are 
then detected based on the m/z ratio in a mass detector.

 (e) Recorder: The mass spectrophotometric profile of an ion, produced as a con-
tinuous ion beam, is recorded at different time intervals.

Fig. 13.9 Synapt G2 mass spectrometer (Waters Corporation, USA) and the components of a typi-
cal mass spectrometer. The sample can be injected into the inlet of the MS either directly or indi-
rectly for ionization, mass analyses, mass detection, and recording of the resultant MS profile 
based on the m/z ratio of the molecular ion (M+) and other smaller molecular fragments. Please 
note that the latest Synapt G2-Si uses TW-IMS for the ionization of metabolites
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Fig. 13.10 (a) LC-MS/MS spectrum of hexanoylcarnitine using Quattro_QQQ 10V, (b) LC-MS/
MS spectrum of hexanoylcarnitine using Quattro_QQQ 25V, (c) LC-MS/MS spectrum of hex-
anoylcarnitine using Quattro_QQQ 40V by positive ionization method, (d) 1H-NMR (1D) spec-
trum of hexanoylcarnitine, (e) 1H-13C NMR (2D) spectrum of hexanoylcarnitine (all the spectra 
(MS and NMR) were obtained from the HMDB version 4.0, Wishart et al. 2018)
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13.6  Nuclear Magnetic Resonance (NMR)

NMR is the only experimental technique that can determine the structures and 
dynamics of biological molecules and their molecular complexes with atomic 
resolution. Kurt Wuthrich shared the 2002 Nobel Prize for Chemistry for his pio-
neering efforts in developing and applying NMR (Palmer and Patel 2002). It is a 
noninvasive or nondestructive analytical technique for the detection of both 
organic and inorganic compounds in the biological samples (solid and liquid). It 
is a robust method for the identification of new metabolites or biomarkers in 
health and disease. In the presence of an external magnetic field, an atom in a 
sample absorbs radio-frequency photon which promotes a nuclear spin from its 
ground state to its excited state. Hence, in NMR, the atoms reemit electromag-
netic radiation with a specific resonating frequency termed as chemical shifts (δ). 
Importantly, the chemical shifts depend on an array of factors such as the mag-
netic properties of the atoms’ isotopes, strength of the magnetic field, sample 
integrity, etc. In the case of metabolomics, proton atoms from small molecules are 
investigated using 1H-NMR (1D) and 1H-13C-NMR (2D). In NMR, the resulting 
signal from small molecules’ protons resonating within a magnetic field will be 
measured. The NMR can also be hyphenated or coupled with HPLC, SPE, CE, 
etc. for increasing the sensitivity and the detection of metabolites from the bio-
logical samples.

13.7  Comparison of MS and NMR

MS and NMR are the analytical tools that are routinely used in metabolomics exper-
iments. NMR is quantitative and highly sensitive and requires less amount of sam-
ple, and tissues can also be analyzed. NMR is limited to detect abundant metabolites 
(≥1  μM), a lower resolution, and dynamic range (up to 102). Moreover, NMR 
instrument occupies more space in the laboratory and the cost of the instrumenta-
tion is very high. However, the MS has the ability to measure metabolites at very 
low concentrations (femtomolar to attomolar) and has a higher resolution (∼103–
104) and dynamic range (∼103–104), but quantitation is a challenge and sample com-
plexity may limit metabolite detection because of ion suppression. MS 
instrumentation is cheaper, but the cost of analyses per sample is much higher and 
the sample preparation is more complex compared to NMR.

The MS and NMR (1D and 2D) spectra of hexanoylcarnitine (HMDB000705) 
have been given in the Fig. 13.10a–e. Please note the change in the MS spectra of 
hexanoylcarnitine based on the collision voltage strength (Fig.  13.10a (10  V), 
Fig. 13.10b (25 V), and Fig. 13.10c (40 V)) in the ionization process.
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13.8  Coupling of MS and NMR Techniques

The coupling or hyphenation of NMR and MS greatly augments the results of 
metabolomics studies (Marshall and Powers 2017). The development of shielded 
magnets has greatly helped to couple LC, NMR, and MS instrumentation and 
increases the sensitivity and coverage of metabolite detection in biological samples 
(Fig. 13.11a, b). The number of publications cited in Scopus for “mass spectrome-
try” and metabolomics, “nuclear magnetic resonance” and metabolomics, and the 
combined search term “mass spectrometry” and “nuclear magnetic resonance” and 
metabolomics till the year 2017 is 36,926, 12,553, and 7412, respectively 
(Fig. 13.12).The LC-NMR-MS coupled method has greatly enhanced the concen-
tration sensitivity by tenfold and improved the mass sensitivity by 1000-fold 
(Marshall and Powers 2017; Lin et al. 2008). A direct infusion FT-ICR-MS coupled 
with 1D and 2D NMR techniques was successfully used to distinguish isotopomers 
of glycerophospholipids (GPL) derived from [U-13C]-glucose in the extracts of 
MCF7-LCC2 cells (Marshall and Powers 2017; Lane et  al. 2009a). Recently, 
SUMMIT MS/NMR, a direct infusion combined high-throughput approach, has 
been developed for the rapid and accurate identification of metabolites in complex 
biological samples (Bingol and Bruschweiler 2015a, b; Bingol et al. 2015a).

13.9  Processing and Analysis of Metabolomics Data

The peak heights for the internal standards should be continuously monitored dur-
ing MS experiments. However, the presence of noise has to be taken into consider-
ation since it distorts the signal from the MS. There are two types of noise present 
in the metabolomics data, namely, random noise and systematic noise. The random 
noise occurs due to the presence of contaminants and general technical problems in 
the system. It causes non-specific spikes and discontinuous or aberrant data. On the 
other hand, the systematic noise results from external factors like the baseline shift 
or drift (uneven baseline) observed in LC-MS caused by the gradient of the mobile 
solvent phase. Hence, the proper identification and reduction of noise in the MS 
data is essential to get reproducible data in the metabolomics experiments.

Data processing includes several similar steps in MS and NMR to extract bio-
logical relevant information from the metabolomics datasets. A feature matrix con-
tains relative intensities of m/z ratios of ions and chemical shifts (ppm) from MS 
and NMR experiments, respectively. The statistical concepts used to analyze the 
high-throughput metabolomics data are broadly divided into univariate and multi-
variate approaches. Both approaches are used to analyze the metabolomics data in 
tandem and each provides exclusive information about the metabolomics datasets.
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Fig. 13.11 Coupled or hyphenated techniques in metabolomics. (a) The coupling or hyphenation 
of LC-MS, LC-NMR, LC-MS-NMR, (b) UPLC-MS, UPLC-NMR, CE-MS-NMR, etc. greatly 
augments the results of metabolomics studies. The development of shielded magnets has greatly 
helped to couple LC, NMR, and MS instrumentation and increases the sensitivity and coverage of 
metabolite detection in biological samples
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Univariate analysis such as student’s t-test, fold change, etc. takes only one vari-
able into account, whereas the multivariate analysis works on an array of variables 
and their association with other variables. Lindahl et  al. (2017a) have recently 
shown that univariate and multivariate analyses were successfully used in tandem 
for comparing metabolomics data obtained using LC-ESI-MS platform from the 
blood of patients with pancreatic ductal adenocarcinoma (PDAC) and chronic pan-
creatitis (CP). The metabolites were investigated using a discovery cohort and a 
validation cohort for each set of disease. The data analysis revealed the presence of 
large number of metabolite features (n = 4578) (Fig. 13.13). These features were 
further filtered using both student’s t-test and orthogonal partial least squares dis-
criminant analysis (OPLS-DA) leading to the identification of 17 and 19 metabo-
lites, respectively, in the discovery cohort. Further applications of univariate and 
multivariate methods provided 11 and 19 metabolites in the validation cohort. 
Finally, using the fold change approach, the metabolites were filtered yielding three 
(univariate) and five (multivariate) metabolites, respectively (Lindahl et al. 2017b).

Hence, in the multivariate analyses, both principal component analysis (PCA) and 
partial least squares (PLS) are established methods to understand the pattern hidden in 
the metabolomics data. PCA helps us to deduce major trends and features in the metab-
olomics data, thus reducing the dimensionality of the data (Fig. 13.14). The data pre-
processing, data scaling, and data normalization strategies are essential to properly 
infer the metabolomics data. Consequently, successful data analysis needs careful 
investigation of several models for arriving at a consensus on the potential metabolite 
biomarkers in health and disease (Fig. 13.15). Lindahl et al. (2017b) have used the PCA 

Fig. 13.12 The number of publications cited in Scopus for “mass spectrometry” and metabolo-
mics, “nuclear magnetic resonance” and metabolomics, and the combined search term “mass spec-
trometry” and “nuclear magnetic resonance” and metabolomics till the year 2017 is 36926, 12553, 
and 7412, respectively
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and OPLS-DA (Fig. 13.16) methods to successfully identify five different metabolites 
that were significantly present in PDAC  compared to CP (Lindahl et  al. 2017b). 
Besides, they obtained precise mass measurements using the public databases such as 
METLIN (Smith et al. 2005) and Human Metabolome Database (Wishart et al. 2007, 
2009, 2013, 2018) as well as their own in-house library comprising 384 synthetic stan-
dards (Fig. 13.17). Furthermore, the univariate analyses showed that hexanoylcarnitine, 
glycocholic acid, and N-palmitoyl glutamic acid were significantly higher in PDAC 
compared to CP in both discovery and validation cohorts (Fig. 13.18). In the multivari-
ate analyses, the metabolite-metabolite correlation analysis (MMCA) heat maps are 
successfully used (Fig. 13.19) for extracting biologically relevant information from the 
high- throughput metabolomics datasets (Jauhiainen et al. 2014; Madhu et al. 2017).

Fig. 13.13 Metabolomics data analysis pipeline. Univariate and multivariate analyses comparing 
PDAC and CP were done in tandem. The data analysis revealed the presence of large number of 
metabolite features (n = 4578). These features were further filtered using both student’s t-test and 
orthogonal partial least squares discriminant analysis (OPLS-DA) leads to the identification of 17 
and 19 metabolites, respectively, in the discovery cohort. Further applications of univariate and 
multivariate methods provided 11 and 19 metabolites in the validation cohort. Finally, using the 
fold change, the metabolites were filtered yielding three (univariate) and five (multivariate) metab-
olites, respectively. (Adapted from Lindahl et al. 2017a, Metabolomics, 13:61 and shared based on 
Creative Commons CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/)
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Fig. 13.14 (a) Principal component analysis (PCA) score (PC1 vs PC2) plot based on the 4578 
variables identified using XCMS processing. (b) Score plot of PC2 vs PC3 showing two potential 
outliers in the metabolomics. (Adapted from Lindahl et al. 2017a, Metabolomics, 13:61 and shared 
based on Creative Commons CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/)

Fig. 13.15 Reversed levels of metabolites in the discovery and validation cohorts. (a) Score scat-
ter plot for the initial OPLS-DA model of 4578 metabolite features in the discovery cohort and (b) 
validation cohort; (c) fold change of phospholipids in the discovery cohort (downregulated) and 
(d) validation cohorts (upregulated). (Adapted from Lindahl et al. 2017a, Metabolomics, 13:61 
and shared based on Creative Commons CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/)
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13.10  Reporting Standards in Metabolomics Data

The metabolomics standards initiative (MSI) has provided several guidelines for 
journals, academia, industry, government organizations, etc. (Members et al. 2007). 
It requires minimum reporting standards that describe the experiments in order to 
disseminate and reuse metabolomics data (Members et al. 2007). Similarly, COSMOS 
(Coordination of Standards in Metabolomics) is a FP7 EU Initiative (http://cosmos-
fp7.eu) that has robust data infrastructure and supports workflows for an array of 
metabolomics applications (Salek et al. 2015; Salek et al. 2013a, b). The open source 
ISA software suite offered by ISA framework (http://isa-tools.org) helps to standard-
ize metadata for scientific experiments and manage an increasingly diverse set of 
basic, translational, and clinical research data to provide a rich description of the 
experimental metadata such as sample type, characteristics, metabolomics approach 
used, etc. to make the resulting data and discoveries reproducible and reusable. The 
tool is based on standard ontology for a range of biological approaches, including the 

Fig. 13.16 A marker panel of five metabolites differentiates PDAC and CP. (a) Score scatter plot 
and (b) loading scatter plot for the refined OPLS-DA model of the five discriminative metabolites 
with consistent fold-change directions in the validation cohort. (c) Phospholipids were removed 
from further analysis due to their differential regulation in discovery and validation cohorts. 
However, the levels of hexanoylcarnitine, N-palmitoyl glutamic acid, and glycocholic acid, hex-
anoylcarnitine were found to be similar in discovery and validation cohorts. (Adapted and modi-
fied from Lindahl et al. 2017b, Metabolomics, 13:61 and shared based on Creative Commons CC 
BY 4.0) (http://creativecommons.org/licenses/by/4.0/)
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MSI initiative and COSMOS, and built around the concept of investigation (I), study 
(S), and assay (A) strategies adopted in experiments (Sansone et al. 2012).

13.11  Metabolomics Databases and Repositories

 (a) Human Metabolome Database

The Human Metabolome Database (HMDB) is a free database (current version: 
HMDB version 4.0, www.hmdb.ca) containing huge wealth of information about 

Fig. 13.17 Metabolites MS data matching with MS spectral library. LC/MS spectra hexanoylcar-
nitine, glycocholic acid, N-palmitoyl glutamic acid, and PAGN. No database spectra was available 
for N-palmitoyl glutamic acid and PAGN test. (Adapted from Lindahl et al. 2017a, Metabolomics, 
13:61 and shared based on Creative Commons CC BY 4.0) (http://creativecommons.org/licenses/
by/4.0/)
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small molecule metabolites experimentally uncovered in the human body (Wishart 
et al. 2018). The database contains chemical, biochemical, molecular, and clinical 
data. The HMDB (version 4.0) database contains 114,100 metabolite entries includ-
ing both water-soluble and lipid-soluble metabolites as well as abundant (>1 μM) or 
relatively rare (<1 nM) metabolites (Wishart et al. 2018). HMDB has hyperlinks to 
various free databases such as PubChem, KEGG, PDB, GenBank, MetaCyc, ChEBI, 
and Swiss-Prot (Wishart et al. 2007, 2009, 2013, 2018). Users can search for metab-
olites using text, sequence, chemical structure, etc. The HMDB has the provision 
for the search LC-MS, GC-MS, 1D, and 2D NMR data derived from biological 
samples (Fig. 13.20). In the MS search option, users can submit mass spectral files 
(MoverZ format) for searching against the HMDB’s library of MS spectra for the 
identification of unknown metabolites from the LC-MS and LC-MS/MS spectra. 
Similarly, the peak lists from 1H NMR, 13C NMR, 2D TOCSY, or 13C HSQC spectra 
can be searched using the NMR libraries contained in the HMDB for the identifica-
tion of unknown metabolites.

 (b) METLIN

The METLIN was created in 2004 at the Scripps Research Institute (https://met-
lin.scripps.edu). It is a free repository for various types of MS data (MS/MS, 
LC-MS, etc.) obtained using various types of instruments such as Agilent, Bruker, 
SCIEX, and Waters QTOF mass spectrometers (Smith et al. 2005). It has the largest 
collection of MS data generated using multiple collision energies and in both posi-
tive and negative ionization modes (Guijas et al. 2018; Sana et al. 2008; Tautenhahn 
et  al. 2012; Zhu et  al. 2013). MS data can be searched using METLIN by mass 
range, peak lists, disease, and biological source (Fig. 13.21). Over 14,000 metabo-
lites have been individually analyzed and another 220,000 have in silico MS/MS 
data (Smith et al. 2005; Guijas et al. 2018; Sana et al. 2008; Tautenhahn et al. 2012; 
Zhu et al. 2013).

 (c) XCMS

XCMS is an open source software package (latest version: 3.7.0) (https://
xcmsonline.scripps.edu) that has been developed to analyze MS data. XCMS allows 

Fig. 13.18 Univariate analysis of three metabolite biomarkers for differentiating PDAC and 
CP.  Single metabolite markers discriminating PDAC and CP.  All three were upregulated in 
PDAC.  Statistical test: Welch’s unequal variances t test. (Adapted from Lindahl et  al. 2017a, 
Metabolomics, 13:61 and shared based on Creative Commons CC BY 4.0) (http://creativecom-
mons.org/licenses/by/4.0/)
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users to perform pathway analyses directly from their raw metabolomic data, and it 
enables proteomic and genomic data integration (Fig. 13.22). The output can be 
visualized in table form or through Pathway Cloud Plot (Forsberg et  al. 2018; 
Gowda et al. 2014; Huan et al. 2017; Mahieu et al. 2016).

 (d) MetaboLights Database

Fig. 13.19 Metabolite-metabolite correlation snalysis (MMCA) heat maps based on datasets from 
different types of brain tumors such as astrocytomas, meningiomas, and oligodendrogliomas and 
metastases. (Adapted from Madhu et al. (2017) and shared based on Creative Commons License) 
(http://creativecommons.org/licenses/by/4.0/)
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MetaboLights is an open source database (https://www.ebi.ac.uk/metabolights) 
with experimental data derived from metabolomics approaches (Salek et al. 2013a). 
It is an ELIXIR-recommended repository and the most preferred depository of vari-
ous eminent journals for the metabolomics data (Salek et al. 2013a, b; Haug et al. 
2013; Kale et al. 2016; Steinbeck et al. 2012). It includes the metabolite structures 
and their reference spectra with their location, biological roles, etc. from metabolo-
mics experiments (Salek et al. 2013a, b; Haug et al. 2013; Kale et al. 2016; Steinbeck 
et al. 2012).

Fig. 13.20 The Human Metabolome Database (HMDB, current version 4.0) is a free database 
(www.hmdb.ca) containing huge wealth of information about small molecule metabolites experi-
mentally uncovered in the human body. Users can search for metabolites using text, sequence, 
chemical structure, etc. The HMDB has the provision for the search MS, GC, 1D, and 2D NMR 
data for the unknown metabolites. In the MS search option, users can submit mass spectral files 
(MoverZ format) for searching against the HMDB’s library of MS spectra for the identification of 
unknown metabolites from the LC-MS and LC-MS/MS spectra. Similarly, the peak lists from 1H 
NMR, 13C NMR, 2D TOCSY, or 13C HSQC spectra can be searched using the NMR libraries 
contained in the HMDB for the identification of unknown metabolites

P. N. Pushparaj

https://www.ebi.ac.uk/metabolights


309

Fig. 13.21 The METLIN (https://metlin.scripps.edu) is a free repository for various types of MS 
data (MS/MS, LC-MS, etc.). It has the largest collection of MS data generated using multiple col-
lision energies and in both positive and negative ionization modes. MS data can be searched using 
METLIN by mass range, peak lists, disease, and biological source. Over 14,000 metabolites have 
been individually analyzed and another 220,000 have in silico MS/MS data

Fig. 13.22 XCMS is an open-source software package (latest version: 3.7.0) (https://xcmsonline.
scripps.edu) that has been developed to analyze MS data. XCMS allows users to perform pathway 
analyses directly from their raw metabolomic data, and it enables proteomic and genomic data 
integration. The output can be visualized in table form or through Pathway Cloud Plot

13 Metabolomics
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 (e) Biological Magnetic Resonance Data Bank

The Biological Magnetic Resonance Data Bank (BMRB) is the central reposi-
tory (http://www.bmrb.wisc.edu) for experimental NMR spectral data for macro-
molecules, and it has an additional analysis option for metabolite data (Smelter 
et al. 2017; Ulrich et al. 2008; Wishart et al. 1997).

 (f) Madison Metabolomics Consortium Database (MMCD)

The Madison Metabolomics Consortium Database (MMCD)  is a database 
(http://mmcd.nmrfam.wisc.edu) on small molecules of biological interest from MS 
and NMR experiments compiled from various metabolomics databases and the sci-
entific literature (Cui et al. 2008). It has 19,700 metabolites and experimental spec-
tral data (Cui et al. 2008).

13.12  Metabolomics Data Analysis Software and Servers

 (a) COLMAR

COLMAR is a webserver (http://spin.ccic.ohio-state.edu/index.php/colmarm/
index) for deducing the structures of metabolites from NMR data (Bingol et  al. 
2015b; Robinette et al. 2008; Zhang et al. 2008, 2009). The COLMAR metabolo-
mics data analysis web portal is used to analyze both 1D NMR and 2D NMR data 
(Bingol et al. 2015b; Robinette et al. 2008; Zhang et al. 2008, 2009).

 (b) Fragment iDentificator

Fragment iDentificator (FiD) (https://www.cs.helsinki.fi/group/sysfys/software/
fragid) is a software tool, free for academic use, for the identification of metabolites 
from MS data (Heinonen et al. 2008). Graphical user interface of FiD is easy to use 
with visualization capabilities and provides information about the metabolite struc-
tures (Heinonen et al. 2008).

 (c) MeltDB

MeltDB (version 2.0) is a web-based software for the analysis of metabolomics 
data (https://meltdb.cebitec.uni-bielefeld.de) (Kessler et al. 2013, 2015; Neuweger 
et  al. 2008). MeltDB can analyze netCDF, mzXML, and mzDATA files (Kessler 
et al. 2013, 2015; Neuweger et al. 2008). The system provides comprehensive data 
analysis and visualization tools to the researchers and stores their experimental 
datasets (Kessler et al. 2013, 2015; Neuweger et al. 2008).

 (d) MetaboAnalyst

MetaboAnalyst (version 4.0) is a web-based MS and NMR data processing tool 
(http://www.metaboanalyst.ca) (Chong et al. 2018; Xia et al. 2009, 2012, 2015; Xia 
and Wishart 2011a, b, 2016). The metabolomic data can be processed and normal-
ized, and various statistical tests (univariate and multivariate analysis) can be 
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 performed with both MS and NMR datasets (Chong et al. 2018; Xia et al. 2009, 
2012, 2015; Xia and Wishart 2011a, b; Xia and Wishart 2016).

 (e) MetaboMiner

MetaboMiner is used to identify metabolites from 2D NMR spectra (http://wishart.
biology.ualberta.ca/metabominer) (Xia et al. 2008) and consists of reference spectra 
of about 500 pure metabolites for comparison and identification (Xia et al. 2008).

 (f) MolFind

MolFind is a free Java-based software package for identifying unknown chemi-
cal structures in complex mixtures using HPLC/MS data (http://metabolomics.
pharm.uconn.edu/Software.html), and the web interface is very easy to use 
(Menikarachchi et al. 2012).

 (g) MVAPACK

MVAPACK is an open source toolkit (http://bionmr.unl.edu/mvapack.php) for 
data handling in NMR and MS metabolic profiling experiments with easy to use 
analytical tools (Worley and Powers 2014; Marshall et al. 2015).

13.13  Metabolic Pathway Databases

 (a) Kyoto Encyclopedia of Genes and Genomes Pathway

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway is a part of KEGG 
database, which consists of manually drawn pathways from a wide variety of organ-
isms (https://www.genome.jp/kegg/pathway.html) (Aoki and Kanehisa 2005; 
Kanehisa 2013, 2016; Kanehisa et al. 2010, 2014, 2017; Kotera et al. 2012; Okuda 
et al. 2008; Tanabe and Kanehisa 2012). KEGG pathway database shows the molec-
ular interaction, reaction, and associated networks for metabolism, genetic and 
environmental information processing, cellular and molecular processes, human 
diseases, drug development, organismal systems, etc. KEGG pathways are linked to 
metabolite, protein, enzyme, and other related molecular information (Aoki and 
Kanehisa 2005; Kanehisa 2013, 2016; Kanehisa et  al. 2010, 2014, 2017; Kotera 
et al. 2012; Okuda et al. 2008; Tanabe and Kanehisa 2012).

 (b) MetaCyc

MetaCyc (https://metacyc.org)  has experimentally clarified pathways (Caspi 
et al. 2006, 2008, 2012; Caspi and Karp 2007; Karp and Caspi 2011; Karp et al. 
2002, 2013; Krieger et al. 2004). MetaCyc has 2642 pathways from 2941 different 
organisms (Caspi et al. 2006, 2008, 2012; Caspi and Karp 2007; Karp and Caspi 
2011; Karp et al. 2002, 2013; Krieger et al. 2004; Caspi et al. 2016). MetaCyc has 
the pathway prediction tools such as PathoLogic for the computational  reconstruction 
of metabolic networks from sequenced genomes (Caspi et  al. 2006, 2008, 2012; 
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Caspi and Karp 2007; Karp and Caspi 2011; Karp et al. 2002, 2013; Krieger et al. 
2004; Caspi et al. 2016).

 (c) HumanCyc: Encyclopedia of Human Genes and Metabolism

HumanCyc (https://humancyc.org) is a database for human pathways (Romero 
et al. 2005). It has information about 28,783 genes and their protein products, meta-
bolic reactions, and other interrelated pathways (Romero et al. 2005).

 (d) BioCyc

BioCyc (https://biocyc.org) consists of 13,075 Pathway and Genome Databases 
(PGDBs) (Caspi et al. 2008, 2012; Caspi and Karp 2007; Caspi et al. 2014, 2016; 
Krummenacker et al. 2005; Latendresse et al. 2012; Walsh et al. 2014) and various 
software tools to visualize and navigate various databases and analyze multi-omics 
data (Caspi et  al. 2008, 2012; Caspi and Karp 2007; Caspi et  al. 2014; 2016; 
Krummenacker et al. 2005; Latendresse et al. 2012; Walsh et al. 2014). Based on the 
quality, the databases in BioCyc are classified into Tier 1, Tier 2, and Tier 3 (Caspi 
et al. 2008, 2012; Caspi and Karp 2007; Caspi et al. 2014, 2016; Krummenacker 
et al. 2005; Latendresse et al. 2012; Walsh et al. 2014).

 (e) The Reactome Pathway Knowledgebase

The Reactome (https://reactome.org) is a free, curated, peer-reviewed online 
database (latest version: 65) of biological pathways, including metabolic pathways 
as well as protein trafficking and signaling pathways (Croft et al. 2014; Fabregat 
et al. 2016, 2018). The primary goal of the Reactome project is to provide intuitive 
bioinformatics tools for the biological interpretation, data analysis, and visualiza-
tion for basic research, genome analysis, systems biology, modeling, and education 
(Fabregat et al. 2018). The Reactome has about 2222 human pathways, 1880 small 
molecules, 11,896 reactions, 10,763 proteins, and 28,436 literature references 
(Croft et al. 2014; Fabregat et al. 2016, 2018).

 (f) WikiPathways

WikiPathways (https://www.wikipathways.org) is an open source, collaborative 
platform for capturing and disseminating models of biological pathways for high- 
throughput “Omics” data visualization and analysis (Bohler et  al. 2016; Kelder 
et  al. 2009, 2012; Kutmon et  al. 2016; Pico et  al. 2008; Slenter et  al. 2018; 
Waagmeester et al. 2016). The database currently has 1570 pathways, covers 11,532 
human genes, and has links to many metabolomics databases (Bohler et al. 2016; 
Kelder et al. 2009, 2012; Kutmon et al. 2016; Pico et al. 2008; Slenter et al. 2018; 
Waagmeester et al. 2016).

In addition to the above, there are several open source databases as well as com-
mercial databases and also the free software tools available at the disposal of 
researchers to extract, analyze, and interpret the high-throughput metabolomics 
data derived from MS or NMR experiments (Bingol et al. 2015a; Tsugawa 2018; 
Ellinger et al. 2013; Jeffryes et al. 2015; Gil de la Fuente et al. 2017).
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13.14  Potential Applications of Metabolomics

Metabolomics helps to discover potential metabolites that may be used as biomark-
ers to differentiate health and disease in medicine. Biological samples such as 
plasma, serum, saliva, tears, seminal plasma, bile, sweat, etc. can be rapidly obtained 
from patients to study the profiles of metabolites. Besides, metabolomics has an 
array of applications in agriculture like studying the metabolite profiling in wild 
type and genetically modified plants and also in natural products research (Johnson 
and Lange 2015). Individualized or precision medicine, a term used for personal-
ized therapy, requires metabolomics for rapid diagnosis of a specific disease (Tan 
et al. 2016). For decades, in a typical healthcare setting, classical biochemical tests 
are used to precisely measure individual metabolites such as blood glucose, creati-
nine, bilirubin, urea, uric acid, antioxidants, adenosine triphosphate (ATP), redox 
compounds (NAD+, NADP), etc. Metabolomics offers the potential for the rapid 
identification of hundreds of metabolites, enabling us to identify numerous disease 
states such as cancer (Lane et al. 2009b; Fan et al. 2009). For example, the PDAC 
has shown a distinct urinary metabolome (Davis et al. 2013) and PDAC can be dif-
ferentiated from CP using LC-MS metabolomics approach (Lindahl et al. 2017b). A 
recent study used LC-MS approach to uncover the changes in blood metabolites due 
to ageing in humans (Chaleckis et al. 2016).

13.15  Conclusions

Metabolomics is an essential “omics” approach to decipher the differential expres-
sion of metabolites in health and disease. Till now, most of the metabolomics data 
were generated using either MS or NMR. Recent advancements in shielded magnets 
help in coupling both MS and NMR together (MS-NMR) to increase the sensitivity, 
reliability, reproducibility, coverage of the metabolome, and quality of the metabo-
lomics data. The advancements in the development of analytical tools and freely 
available databases for metabolomics have greatly increased the accuracy of data 
analysis and biological interpretation. Hence, it is used in various areas such as 
agriculture, precision medicine, biomarker discovery, drug discovery, food science, 
veterinary science, environmental studies, and other interlinked areas.
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14.1  Introduction

The process of drug discovery and development is arduous and has a long history 
dating back to the early days of human civilization. Throughout history, humans 
have searched either incidentally or intentionally for remedies to fight against dis-
eases, exploring nature to meet two major needs – food and herbs for mitigating 
diseases. By this process new drugs were discovered from nature and later through 
scientific experimentation. In general, a disease or clinical condition that lacks suit-
able drug treatment triggers initiation of the drug discovery process.

The research and development of a new drug is an expensive and complex pro-
cess, which, on average, takes around 10–15 years (Fig. 14.1) and costs around $1.8 
billion (Zhong and Zhou 2014; Xiao et al. 2015). In this process, drugs were discov-
ered by synthesizing novel compounds; this discovery involved multi-step proce-
dures, in which lack of potency was determined (30%) and toxicity studies (11%) 
were carried out, with drug failures attributed to poor pharmacokinetic parameters 
(39%), side effects in humans (10%), and various commercial factors. Now the drug 
discovery process has been transformed, with advances in genomics, proteomics, 
informatics, high-throughput and virtual screening methods, quantitative structure-
activity relationships, and structure-based drug design.

The process of drug discovery and the development of a new drug may be sum-
marized as follows:

 1. Design and synthesis of novel compounds and the study of their physicochemi-
cal parameters.

 2. Preliminary biological evaluation, followed by specific biological evaluation of 
the compounds.

 3. Study and analysis of toxicological parameters.
 4. Target organ toxicological studies.
 5. Acute and sub-acute toxicological studies.
 6. Metabolic studies.
 7. Synthesis and quality control of bulk material.
 8. Phase I clinical evaluation, which includes the study of human toxicity and 

metabolic studies.

Fig. 14.1 Traditional drug discovery methods
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 9. Final formulation and physicochemical evaluation.
 10. Phase II clinical evaluation, which includes dose titration and limited efficacy 

studies.
 11. Phase III clinical evaluation, performed to study broad efficacy and tolerance in 

a large population of patients, as well as chronic toxicological studies.
 12. Phase IV clinical evaluation, which includes post-marketing surveillance stud-

ies during general clinical use.

In the above summary, steps 1, 7, and 9 involve techniques/advances in medici-
nal chemistry and pharmaceutics, whereas steps 2–6 are covered by preclinical 
pharmacological evaluation of the drug in animals. Steps 8, 10, and 11 are in the 
domain of clinical pharmacological evaluation of the drug in humans. Step 12 is an 
ongoing process of surveillance to ensure safe use of the drug. If all these steps are 
satisfactorily passed by the candidate drug, it is granted registration as a new drug 
designed for the treatment of a specific disease for use in humans.

14.2  Drug Discovery Process

14.2.1  Target Identification

Drugs that are discovered sometimes fail clinically, for two reasons; the first being 
pharmacological failure and the second being their adverse effects. Hence, the fore-
most key during the process of drug discovery and development is the identification 
and verification of the site of action (target), this is briefly outlined in the Fig. 14.2. 
The word ‘target’ is a broad term that covers a huge range of biological moieties 
such as proteins, genes and nucleic acids. Amalgamating expertise in medicinal 
chemistry and biological sciences has resulted in redefined criteria for target selec-
tion by considering a drug’s biological and pharmacological properties (Zhou and 
Zhong 2017; Hughes et al. 2011). The selected target should be essential for the 
growth or survival of the organism under a chosen condition that is considered as 
most essential, for example the main promiscuous targets choosen in the treatment 
of tuberculosis are ATP synthase, RNA polymerase, gyrase etc. of the Mycobacterium 
tuberculosis. The target should be vulnerable to chemical inhibition – a property 
commonly referred to as druggability, which means that it should be able to bind 
with high affinity to the presumed drug moiety; after forming a bond, or on interac-
tion. The presumed drug moiety should develop pharmacological activity that can 
be established by both in- vitro and in-vivo methods. The refinement of this step 
helps to determine the correlation between the specific target and the disease, and 
hence facilitates the assessment of whether or not the mechanism of the target mod-
ulation causes unwanted effects.

The data mining process represents a milestone in target identification. It is an 
essential approach that is frequently applied to determine patterns from large data 
sets and hence to create a structure for future use (Yang et al. 2009). The data min-
ing approach uses bioinformatics tools that aid in identifying, selecting, and priori-
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tizing potential drug targets. The data available is obtained from various sources, 
which include research papers and filed patents, proteomics data, transcription data, 
and transgenic phenotypic statistics. Another approach includes the examination of 
the mRNA or protein to analyze its manifestation during the disease; the results of 
this examination are correlated to find the relation between the protein and disease 
progression. The target process with the most fruitful results is to consider genetic 
associations, the best paradigm being in the characterization of familial Alzheimer’s 
disease.

14.2.2  Target Validation

The next step after target identification is the unambiguous validation of the target, 
which involves demonstration of the pertinence of the site of action and thus can 
confirm the causes of the specific disease; modification of the validated target may 
probably be the reason for the drug’s pharmacological efficacy or activity. This 
process of validation involves exhaustive functional group characterization, authen-
tication of the pathway, and modification of the activity of the protein to establish its 
association with the disease phenotype. The process of target identification and vali-
dation is depicted in Fig. 14.3.

The basic concept of antisense therapeutics is to involve in the binding of anti-
sense moieties, forming double-stranded series, thereby inhibiting the translation or 
promote degradation of the targeted mRNA. In this technique, antisense DNA/RNA 
and RNA interference (RNAi), which are complementary to a distinct series of 
RNA and DNA, are used (Henning and Beste 2002). The best example of the result 
of this technique is fomiviresin, an antisense drug for viral retinitis which has been 

Fig. 14.2 Approaches in drug target identification
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approved by U.S Food and Drug Administration (FDA). But the process integrated 
while generating the oligonucleotides emanated the moieties with good amount 
reaching the systemic circulation and even noticeable harmful effects, creating their 
in  vivo usage doubtful and even insufficiency in distinctiveness in choosing the 
suitable nucleotide probes limited their utilization.

Another attractive validation tool is the use of transgenic animals to explain the 
functional consequence of gene manipulation and to observe the phenotypic end-
points. In this approach, during the initial period of gene targeting, animals are 
produced that lack a gene for a specific process/activity from birth to the end of 
their life. One good example is the use of the P2X7 knockout mouse to establish 
the role of ion channels in the progress of neuropathic and inflammatory pain 
(Chassell et al. 2005). Monoclonal antibodies are exceptional aids for site evalua-
tion. During the process of target validation, there will be interface to a consider-
able extent on the site of action. This allows effective distinction among the 
equivalent sites. In divergence to this, small molecules often cannot interact with 
the protected site of action.

More recently, chemical genomics, which is the study of genomic responses to 
chemical compounds, has emerged as a tool for target identification and validation. 
This approach facilitates the rapid identification of novel drugs and targets during 
the early phase of drug discovery, with the goal, in anticipation, of providing moi-
eties that will target every protein encrypted by the genome.

Fig. 14.3 Multifunctional process of target identification and validation
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14.2.3  Lead Discovery

The identification of hits and lead compounds is crucial in the drug discovery pro-
cess. There are several approaches for lead identification. To identify lead com-
pounds from arrays of synthesized compounds, they need to be screened for 
biological activity. Once the lead is identified, it can be structurally modulated to 
improve its potency.

A ‘hit’ can be defined as a chemical compound that exhibits the desired biologi-
cal activity during the screening process and reproduces the activity upon retesting. 
Various screening paradigms are available for screening and identifying hit mole-
cules. High-throughput screening (HTS) is the most popular, authentic, and rational 
approach for identifying new chemical entities with therapeutic efficacy to prove 
the distinctiveness of the action of chemical molecules against a specific site. This 
is a robust assay method for the recognition of actual hits. It is carried out in 96- or 
384-well plates; this helps in screening huge numbers of molecules, about 10,000, 
concurrently (Fox et  al. 2006). Some researchers use an ultra-HTS approach to 
evaluate up to 100,000 molecules per day. Once a library is entrenched, then it can 
be utilized for various assays. When the exact hit molecule is identified, it is refined 
further to improve its selectivity, binding properties, potency, and physicochemical 
properties by a process called hit-to-lead development. Other screening techniques 
are also used for identifying lead molecules; for example, focused screen, fragment 
screen, structural-aided drug design, physiological evaluation, and nuclear mag-
netic resonance screening. In recent years, pharmaceutical companies have become 
associated with large institutes, with the aim of discovering targets and gathering 
molecular data and infrastructure to screen novel compounds and to optimize the 
screening ‘hits’ into clinical candidates.

The probability of effectiveness of small-molecular-weight molecules assembled 
in compound libraries should obey biological variables such as Lipinski’s rule of 
five – the molecule should have a molecular weight of 500 or less; c log P value less 
than 5 (to estimate the lipophilic nature of the drug, which alters the absorption 
parameters), should have fewer than 5 hydrogen bond donors, also fewer than 10 
hydrogen bond acceptors and not more than 3 rotatable bonds. The term ‘drug-like’ 
implies molecules with these features; most marketed drugs have a molecular 
weight of less than 350 and a c log P value of less than 3.

The following are a few important approaches for lead identification:

14.2.3.1  Random Screening

Random screening is considered to be a valuable approach when a known chemical 
entity or any other compound with the desired activity is unavailable. This method 
involves no intellectualization. The new chemical moieties are subjected to a battery 
of screening tests to establish their different biological activities. This was the only 
approach in 1935 and even now it is an important approach, considered as the method 
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of choice to discover drugs or leads and when nothing is known about the receptor 
target (Giridhar 2012). The screening tests include studies of animal behavior, iso-
lated tissues, intact animals, and some animal models of the disease of interest. 
Random screening is a sort of blind hitting to hit a nail head. Streptomycin and the 
tetracyclines are drugs that were discovered during a random screening process.

14.2.3.2  Serendipity

Serendipity refers to an accidental discovery that is made while searching for some-
thing else (Baumeister et al. 2013). Serendipity has led to the introduction of many 
useful drugs in the past; for example, penicillin as an antibacterial agent, and ligno-
caine and phenytoin as antiarrhythmics. Serendipity also leads to new uses being 
found for old drugs and to drug side effects being employed as therapeutic 
applications.

14.2.3.3  Molecular Modelling

Molecular modeling is an essential and established computational tool box for 
medicinal chemists that assists in early drug discovery and development. Nowadays 
molecular modeling has become an integrated part of investigating, predicting, and 
explaining the molecular and biological properties of organic molecules, thus estab-
lishing them as potential drug candidates. The incorporation of this method can 
bring about helpful insights into the behavior of the molecules and make the drug 
discovery process more efficient and fruitful.

14.2.3.4  Molecular Manipulation

In this method analogues of existing established drugs are synthesized and evaluated 
for their biological activity. This is a more scientific and logical approach than other 
approaches discussed and may yield newer moieties with added advantages such as 
increased rates of absorption, greater potency, and enhanced selectivity, and thus 
fewer side effects. Most of the synthetic penicillins and cephalosporins were devel-
oped in this manner.

14.2.3.5  Molecular Designing

The molecular designing approach aims to design compounds to fulfill a specific 
biological activity; hence, it is considered to be the most rational form of drug 
research and development. This method may involve the synthesis of naturally 
existing substances, such as a precursor of a neurotransmitter like dopamine for 
cardiac shock, a hormone, or a vitamin.
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14.2.3.6  Metabolites of Drugs

The active metabolite formed in the body after the metabolism of a drug continues 
to produce therapeutic effects in the body and sometimes shows advantages over the 
parent compound. The pharmacologically significant metabolites may be subjected 
for structural modification to attain the required chemical stability, efficay and 
selectivity. The simplest and best example is nortriptyline, a an active metabolite of 
amitriptyline, which is more effective, potent and with enhanced selectivity.

14.2.3.7  Combinatorial Chemistry

In the present era of medicinal chemistry, combinatorial chemistry has emerged as 
a technique that generates billions of new compounds to produce libraries, which 
are originally screened by employing robotic high-throughput screening tools. A 
compound with a positive response is examined by applying conventional research 
approaches; then the moiety is subjected to additional modification to intensify its 
effectiveness (Liu et al. 2017).

14.2.3.8  Genetic Medicines

Synthetic oligonucleotides are being developed to target sites on nucleic acids espe-
cially on DNA sequences or genes or messenger RNA so that the generation of 
disease related protiens is blocked. This approach is worthwhile in the treatment of 
cancers and viral diseases without harming healthy tissues (Cohen and Hogan 
1994).

14.2.3.9  Gene Therapy

Gene therapy is a promising therapeutic option for many diseases, including some 
cancers, as well as genetic disorders. In this strategy a nucleic acid, generally in the 
form of DNA, is given to alter the genetic repertoire for the treatment of diseases.

14.2.4  Lead Optimization

The molecules (i.e., hit molecules) that are considered to meet the basic objective of 
the lead optimization step are then considered for characterization before being sub-
jected to preclinical studies. From this stage researchers proceed with their discov-
ery work to generate potential backup molecules. Lead optimization is accomplished 
through the synthetic manipulation of the hit molecule the structural activity 
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relationship (SAR) approach and a structure-based method, if structural data about 
the site of action is ready for use. All the data gathered will be used in the develop-
ment of the target data, along with information about toxic effects and chemical 
manufacture. This information will be further utilised in the preparation of regula-
tory compliance which in turn permits the use of this molecule in humans.

14.3  Drug Development Process

A new chemical entity is recognized and optimized at the drug development stage 
when it has been proven to have drug-like properties and potency in the in-vitro 
studies. Despite the laboratory results, the differences between these investigations 
and results in humans should be diminished. Now the chemical entity must be sub-
jected to the developmental process, a precarious step in the drug discovery proce-
dure. The SARs need to be determined. After synthesis, the structure of the new 
compound and its purity is determined and confirmed by analytical techniques. 
Further, investigation of the promising moiety may be done in two phases: animal 
studies  – preclinical pharmacology, and human studies  – clinical pharmacology. 
Then the novel drug candidate is subjected to validation of its pharmacological 
actions and toxicity studies. Once the drug’s potency is established, detailed toxicity 
studies – acute, subacute, and chronic – and metabolic studies are carried out.

The preclinical data are scrupulously screened, scrutinized, and analyzed by the 
drug control authority of the country, and if the drug is considered to be safe that 
authority then issues permission for human trials. The candidate drug is then sub-
jected to clinical trials; once the candidate drug clears the strict evaluation channel 
it then passes from the laboratory to the market for use in humans for the treatment 
of disease.

14.3.1  Preclinical Studies

Preclinical studies involve extensive pharmacological testing of the drug candidate 
by in-vivo studies (i.e., in an animal population) and in-vitro studies (i.e., in test 
tubes or a research laboratory). These studies are designed to estimate the initial 
potency, harmful effects, and ADME (absorption, distribution, metabolism, and 
excretion) parameters to enable the relevant pharmaceutical company to understand 
whether or not it is valuable to proceed with the evaluation process. Based on the 
results of these studies, further specific tests are performed to screen for anticancer, 
antiarrhythmic, anti-inflammatory, anticonvulsant, anti-depressive, and tranquilliz-
ing effects, and other pharmacological properties of the drug. The experimental 
animals used include rats, mice, guinea pigs, dogs, and sometimes monkeys.
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The major areas covered under the category of preclinical evaluation of the drug 
are its toxicity profile, safety and efficacy evaluation, and pharmacokinetics profile 
(ADME studies).

14.3.1.1  Acute Toxicity Testing

Acute toxicity studies are most commonly conducted to determine the effect of a 
single dose on a specific animal species; this testing permits the median lethal dose 
(LD50; i.e., the dose that is lethal to 50% of the test population of animals) of the 
investigational product to be established (Parasuraman 2011). The studies are 
designed to take place for a period of 14 days in two distinct species (one rodent and 
one non-rodent). Toxic symptoms such as convulsions, tremors, and hyperactivity 
are examined, and all mortalities that occur during the drug study are documented, 
and morphological, biochemical, pathological, and histological changes in the dead 
animals are examined . The drawbacks of this method are the large numbers of ani-
mals involved and their high mortality rate. To overcome these limitations, a few 
modified methods, such as the fixed dose procedure (FDP), the acute toxicity cate-
gory method (ATC), and the up and down method (UDP) have been developed.

14.3.1.2  Sub-acute Toxicity Testing

Sub-acute toxicity tests are designed to estimate the toxicity of the drug under inves-
tigation after repeated administration; these tests assist in establishing doses for 
long-term sub-chronic studies. Various laboratory studies, including hematologic 
examinations and hepatic and renal function tests are conducted, and the results are 
carefully observed. The animals are maintained at the maximum tolerated dose for 
about 2–3 weeks for observation of the development of pathological changes. If any 
changes are noted, the animals are killed and complete histopathological examina-
tion is performed.

14.3.1.3  Chronic Toxicity Testing

The goal of performing chronic toxicity studies is to determine the adverse effects 
of long-term exposure to the investigational drug/chemical. These tests usually use 
two species of animals, one rodent and one non-rodent. The study period comprises 
many months and during this period detailed biological and histopathological 
parameters are evaluated.

Today, toxicological studies of the effects of all new drugs on reproduction and 
development have become mandatory. These studies assumed prime importance 
after the thalidomide disaster of the late 1950s, which left more than 10,000 infants 
congenitally deformed and crippled. The tests carried out are:
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 (a) Tests of fertility and reproductive performance, which are usually carried out in 
rats, where they are treated with the new drug before and after the mating 
period. The effects on the early and late stages of embryonic and fetal develop-
ment and lactation are analyzed and documented.

 (b) Teratological studies, which are usually carried out in two animal species to 
ascertain the effects of the drug on the process of organogenesis. The drug is 
given after mating, during the period of organogenesis. The fetuses are care-
fully examined for visceral and skeletal abnormalities; the number of live and 
dead fetuses is recorded; and resorption sites in the uteri and corpora lutea are 
examined.

 (c) Studies of the adverse effects on the mother and offspring, which are carried out 
in the perinatal and postnatal periods by administering the new drug during the 
last third of pregnancy, up to the time of weaning. Observations are made for 
adverse effects on labor and lactation and for direct toxic effects on the 
newborn.

In all these tests control groups of untreated animals in sufficient numbers must 
be studied to accurately assess the drug effects, if any.

14.3.1.4  Therapeutic Index (TI)

The therapeutic index (TI) , also referred to as the therapeutic ratio, is the relative 
margin of safety of a drug. In the early days of pharmaceutical toxicology, first the 
LD50 for the drug was determined and then the dose that was effective in 50% of the 
test population, termed the median effective dose (ED50), was estimated. The objec-
tive was to elucidate the benefit/risk ratio. However, in clinical pharmacology/medi-
cine the TI based on the LD50 and ED50 is not valid. Instead, in the clinic a dose that 
has toxic effects in fewer than 50% of humans (e.g., a specified increase in heart rate 
in the case of an adrenoceptor agonist) can be related to that dose which is effective in 
50% of patients with bronchial asthma (e.g., a specified decrease in airway resistance 
of an adrenoceptor agonist).

In animals, the ratio of the LD50 to the ED50 is the TI:
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In humans, the ratio of the toxic dose in 50% of patients (TD50) to the ED50 is the TI.
For a drug to have a greater safety profile a high TI value is preferable. In animals 

a modification of this concept can be applied. The TI can be calculated as:
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In humans the TI data are not available for many drugs; however, this concept pro-
vides a sensible way of correlating the versatility of one drug with other parameters, 
i.e., safety in relation to efficacy.

Thus, the TI has not been regarded as having much significance, and it has little 
value as a measure of the clinical usefulness of a drug. It is often pointed out that 
digoxin is a very useful drug despite its low TI. The benzodiazepines have replaced 
barbiturates as hypnotic drugs because their TI is very high compared with that of 
the barbiturates. To sum up, the TI provides a valid general concept, but it provides 
no measure of the actual usefulness of a drug.

14.3.1.5  Pharmacokinetic Parameters

All promising new compounds that has proven to be worthwhile are further sub-
jected to pharmacokinetic studies. These are performed in several species of animals 
to establish the relative bioavailability of the compound upon oral or parenteral 
administration. Information regarding the elimination half-life is useful for estimat-
ing optimal dosage intervals. The ADME data obtained in animal studies are cau-
tiously applied to humans. This information is useful if further testing is warranted.

14.3.2  Clinical Trials

The preclinical data obtained from animal studies provides complete information 
regarding the pharmacological, toxicological, and pharmacokinetic parameters of 
the new drug to the pharmaceutical companies. The data obtained is scrutinized by 
expert government bodies in each country to confirm whether or not to proceed with 
clinical drug trials. Once the data is approved, then, with great care and meticulous 
planning, the methodology adopted will be implemented. The new drug application, 
in the prescribed format, with all the relevant literature and preclinical data, must be 
submitted to the relevant drug control authority for scrutiny, and after approval clin-
ical evaluation studies are initiated.

In the United Kingdom the introduction of new drugs is regulated by the 
Committee on Safety of Medicines (CSM), and in the United States this regulation 
is done by the Food and Drug Administration (FDA). In India the Drug Controller, 
Government of India, based in New Delhi, is responsible for the organization of this 
system. Only when approval is given by these organizations can the drug can be 
administered to humans for clinical evaluation.

To design a perfect clinical trial much thought and expertise is needed, and per-
fect team work is involved. Some salient guidelines are:

 (i) Ethics and patient selection:
The clinical research carried out by the scientists/doctors working with patients 

or healthy volunteers should follow the recommendations of the Declaration of 
Helsinki of the World Medical Association. Consent must be obtained in writing 
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from the subjects (patients or volunteers), or their guardians if the patient is inca-
pable of giving consent. The subjects must be informed that a new drug is being 
tried that may be beneficial; however, a calculated risk is involved. The new treat-
ment is compared with the known conventional treatment. Use of placebo con-
trols is unethical and is not permissible if an effective remedy is available for the 
disease. Criteria for the selection of patients should be well thought out and 
defined. Special care must be taken if more than one doctor is involved in the 
selection of patients in the trial, especially in multicentric trials.

 (ii) Response measurements. The end-points should be clearly defined. It is useful 
to define non-responders. Side effects should be carefully observed and 
recorded.

 (iii) Experimental design. The design of the trial must be statistically sound, for 
which, preferably, a biostatistician should be consulted. In general, controlled 
clinical trials must include four safeguards against bias: (a) double- blind tech-
nique; (b) randomization of treatment; (c) matching of patients; and (d) cross- 
over technique.

The final stage of a clinical trial is the statistical analysis of the data obtained. 
Relatively simple tests like the Student’s t-test or the Chi-square test may be suffi-
cient to determine the significance of results. Complex statistical methods include 
non-parametric tests, analysis of variance and covariance, and dispersion and 
sequential techniques.

14.3.2.1  Phases of a Clinical Trial

Phase I: Clinical Pharmacologic Evaluation

Phase I trials are dose escalation studies, considered as the initial stage for testing of 
the drug in groups of about 20–80 healthy volunteers or patients, depending on the 
class of drug and its safety. These studies are designed to evaluate the safety, toxicity, 
tolerability, pharmacological actions, pharmacodynamics, and pharmacokinetics of 
the drug. The subject is observed until the drug is completely eliminated from the 
body, which permits in designing the therapeutic dose of the drug half-lives. Under 
some circumstances patients who are in the final stage of a disease and for whom there 
is no alternative medication are used in Phase I trials, especially in various cancer and 
HIV drug trials. Phase I clinical trials may be single ascending dose (SAD) studies or 
multiple ascending dose (MAD) studies based on the nature of the study design.

Phase II: Controlled Clinical Evaluation

After confirming the fundamental efficacy and safety of the investigational chemi-
cal moiety during the Phase I clinical studies, Phase II studies are performed in large 
groups of 30–300 patients. In fact, these studies are extensions of Phase I studies 
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that are intended to ascertain the effectiveness of the drug as well as establishing the 
safety of the drug under strictly controlled conditions. This step is crucial in the 
drug development process. The drug under investigation fails if it does not elicit the 
expected activity or if it elicits unwanted results. Late Phase II trials are done in a 
controlled double-blind manner, and at the end of these studies one should be con-
vinced about the therapeutic usefulness of the drug.

Phase III: Extended Clinical Evaluation

Phase III trials are formal therapeutic trials that are carried out, preferably in a 
double-blind controlled manner, in 300–1000 patients and are considered as ran-
domized controlled multicenter trials. Phase III trials are of relatively long duration, 
and are costlier and more laborious to plan and implement than Phase II trials. If, 
after Phase III studies, the drug control authority is satisfied regarding the safety and 
efficacy of the drug then it will be approved by that authority. Most of the drugs that 
meet these trial requirements will be marketed under FDA norms with proper rec-
ommendations through a New Drug Application comprising all the data regarding 
manufacturing details, preclinical and clinical studies. After this step, the drug is 
marketed for general use.

Phase IV: Post-marketing Surveillance

Phase IV trials include pharmacovigilance and ongoing technical support for the 
drug after its sale has been authorized, for example after getting approval under the 
FDA Accelaerated Approval Program. On clinical use over many years unexpected 
harmful reactions may occur. Harmful effects discovered may result in the with-
drawal of the drug from the market or the drug’s restricted use. Current examples of 
such drug withdrawals are cerivastatin and troglitazone.

Investigational New Drug (IND)

An investigational new drug application needs to comply with suitable regulatory 
authorities for procuring consent to conduct investigational research, which includes 
the evaluation of a new dosage form or new pharmacological activity of a drug that 
has already gained permission to be marketed. The protocol of testing needs to be 
approved by suitable regulatory authorities or by an independent review board 
(IRB) or ethical advisory board. An IRB committee is an independent one consist-
ing of physicians, community advocates, and others, to ensure that the clinical trial 
is ethical.
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New Drug Application (NDA)

An NDA is an application to market a novel drug. This application is a record with 
the safety and potency details of the investigational drug and it contains all the data 
gathered at the time of the drug development process. After the successful comple-
tion of the preclinical and clinical testing, all these sequences of reports are submit-
ted to the FDA in the United States, or to the respective regulatory authorities in 
other countries. The application provides substantial evidence regarding the usage 
of the drug and the conditions for which it is specified, along with other consider-
ations as specified on the label. The entire process of drug discovery is briefly 
depicted in Fig. 14.4.

14.4  Conclusion

The drug discovery and development process is remarkably an interesting and chal-
lenging area because of the emergence of different new diseases. Drug discovery in 
modern medicine is a costly, laborious process with low rate of success; it requires 
huge investments from pharmaceutical companies, as well as grants from national 
governments. According to the statistical data in the year 2010, the drug discovery 
process cost around $1.8 billion. A ‘hit’ molecule that clears preclinical and clinical 
trials may sometimes be withdrawn from the market owing to its adverse effects. 
Hence, developing a safe and effective drug involves the understanding of clinical 
strategies and legal and regulatory matters. Despite all the challenges, drug discov-
ery has been revolutionized, converting many fatal ailments into diseases that can be 
treated with routine therapeutic practices (Landau et al. 1999).

Drug
discovery

Preclinical

Clinical trials
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FDA review
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250
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Fig. 14.4 Drug discovery time line
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15.1  Introduction to Molecular Docking

Molecular docking (MD) is a quick way to predict the orientation of ligand-receptor 
complex, taking into consideration the known structure of the receptor (Taylor et al. 
2002). MD can potentially explore different aspects of ligand-receptor binding 
characteristics like complementarity and affinity, etc. The techniques that are com-
monly used in MD are genetic algorithms, molecular dynamics, simulated harden-
ing, Monte Carlo algorithms, purpose complementary ways, distance pure 
mathematics ways, fragment-based ways, tabu searches, and systematic searches. 
There are two major steps involved in docking procedure, first is a search algorithm 
and second is a scoring function. The search algorithm can differentiate between 
conformational changes of the ligand through one of the techniques mentioned 
above. Different possibilities of binding between the ligand and the receptor can be 
listed by systematic searches. This can be a great time-consuming process espe-
cially in case of large substrates with elastic shape; therefore, time rate between 
exploring the conformational domains and adequate computational time for search-
ing should be measured. Scoring function usually classify different shapes retrieved 
by the search algorithm. Effective scoring function can easily highlight the experi-
mentally obtained structure from other predicted structures retrieved through the 
search algorithm. Commonly used techniques are empirical free energy scoring 
functions, molecular mechanics force fields, and knowledge-based functions (Taylor 
et al. 2002). Several computational servers like DOCK (Kuntz 1992; Ewing et al. 
1997), GOLD (Vicente et al. 1997), AutoDock (Morris et al. 2008), Surflex (Spitzer 
& Jain 2012), and FlexX (Schellhammer & Rarey 2004; Kramer et al. 1999; Kramer 
et al. 1997) are available to execute the MD procedures. These programs differ from 
each other in searching and implementation of algorithms and scoring methods. 
These programs mostly hold the receptor in rigid form, allowing a certain degree of 
flexibility to the ligands.

15.2  Genetic Algorithms

The genetic algorithms are known to be stochastic universal optimization strategies 
(Judson 1996). These algorithms can be customized for a variety of optimization 
issues as they don’t employ gradient information as an input. And it also explores 
the parameters that form the three-dimensional structure at the same time. The 
genetic algorithms are simplified in Fig. 15.1.

Three local minima named as I, II (the global minimum), and III are illustrated 
in the f(x) function, where the terms of genetic algorithm were inserted as fitness, 
populations, and chromosomes. The fitness is represented in function f(x) where the 
populations are a group of individuals representing the conformational space. The x 
refers to chromosomes which are parameters forming each individual. Additional 
expression terms for genetic algorithm are mutations, selection, crossovers, and 
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migrations (Westhead et al. 1997). The operator of the mutation chooses individuals 
through random changes of the chromosomes. The best individuals based on the 
fitness function are then chosen for crossover, which basically permits the swapping 
of chromosome sets between parents. In migration process, chromosomes of indi-
viduals are transmitted between subpopulations. All the above techniques persist to 
the point where certain stopping criteria run across. In the following sections, an 
introduction to most commonly used three docking programs is described.

15.3  Molecular Docking Tools

15.3.1  FlexX

FlexX tool characterizes the interaction characteristics between protein and ligand 
molecules (Bohm 1992). The interacting group in any molecule which is to be 
docked, will be assigned with interaction type and corresponding compatibility. 
Some examples for interaction types are geometrically restricted hydrogen bonds, 
metal and metal acceptor interactions, and hydrophobic interactions, for instance, 
phenyl ring and methyl group interactions. The special contact geometry for each 
group which forms an interaction, is defined by allowing the interaction surface to 
prevail over the centre of the molecule, as part of the sphere. An interaction takes 
place once the center of one group coincides with the interaction surface of an oppo-
site group. FlexX docking algorithm is mainly built on three stages of gradual con-
struction design as follows: (1) base selection, where the base part of the ligand is 
chosen, and (2) position in the active site of the protein (base fragment placement). 
At the end, and starting from another position of the base fragment, (3) the ligand is 
gradually reconstructed (complex construction). Once new fragments to the ligand 
are added, additional interactions appear, and the highest scoring function rank is 
marked until the ligand is fully structured.

Fig. 15.1 A sample one-dimensional fitness function illustrating local minima labeled as I, II,  
and III
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In FlexX docking algorithm is partially sensitive to the first two stages: selection 
and placement of base portion. If the structure of a fragment in a molecule used in 
docking is known previously, then the most useful and time-saving option is to pose 
that portion manually in the binding site through mapref command. Thus, besides 
minimizing the docking period, this step will also increase the chance of foretelling 
the highest binding mode for the ligand. The updated version of FlexX tool is 
FlexX-Pharm (Hindle et al. 2002), which can facilitate recruiting more information 
about protein-ligand interactions prior to the docking procedure. Note that con-
straints are specified by chosen FlexX interactions and volumes that are included, 
leading the docking procedure to result in a group of docking solutions with specific 
attributes. By checking a spectrum of predicted phenomena throughout the elastic 
built of ligand fragments among the active site, FlexX-Pharm recognizes the spe-
cific construct docking solutions that are likely to follow the constraints. Those that 
are not following the constraints are mostly excluded, lessening time consumption 
and giving a chance for new solutions of docking to appear.

15.3.2  AutoDock

AutoDock (Adeniyi & Ajibade 2013; El-Hachem et al. 2017; Jiang et al. 2015) is an 
application made to set an automated operation in ligand-biomacromolecular inter-
action prediction. The simulation of docking procedure here uses one of the many 
available search methods. The genetic algorithm used in AutoDock program is 
Lamarckian, and Monte Carlo simulations. Ligand elasticity reaches to 52 dihedral 
angles and receptor is maintained in rigid form. Four phases AutoDock based 
docking procedure are ligand and receptor preparation, the AutoTors and AutoGrid 
procedure, the application of the genetic algorithm, and the fitness function plus 
free energy evaluation

15.3.2.1  Preparation of the Ligand and Receptor

In the following example, a docking box built of a grid with default measurements 
of 60 × 60 × 60 points and 0.575 Å grid spacing was used and positioned in the 
active side of the receptor. The long side of the box is placed in the direction of the 
binding site center covering the entry of that binding site. This way, the docking box 
covered the binding site completely along with some region beyond the binding 
entrance. Other possible sizes of the box that can be used in calculations are 
82 × 60 × 60 and 110 × 80 × 80 with four grid point additions. In fact, the optimum 
parameter of the box that has been detected is 92 × 70 × 70. It provides the maxi-
mum flexibility for the ligand to have various conformations in the binding cleft and 
a very minimum time consumption of calculation due to its small size.
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15.3.2.2  AutoGrid Procedure

AutoDock intakes pre-computed grid maps for each atom type that exists in the 
docked ligand to make the simulations fast. Grid maps are generated by AutoGrid 
and composed of a 3D structured lattice of evenly distributed points, surrounded 
entirely or partly, and placed in the center of some important sites of the studied 
macromolecule. All points in the lattice of the map stores the potential energy of a 
“probe atom” or functional group in each atom of the macromolecule. Figure 15.2 
shows the main features of a grid map.

The illustration in Fig.  15.2 presents the docking box with the entire protein 
inside. The box size is determined by the lattice points with grid spacing of the user’s 
setting. The substrate configuration energetics are calculated through a trilinear inter-
polation of affinity values for those grid points around each atom. The required time 
for energy calculation in the grid depends on the atom amount in the substrate, apart 
from the atoms in the protein.

15.3.2.3  AutoDock Genetic Algorithm Implementation

The configuration of the ligand-protein is marked by state variables that are com-
posed of a group of variables representing the translation, orientation, and confor-
mation of ligands with respect to proteins. Every state variable indicates a gene, and 
the ligand’s state corresponds to a genotype, whereas its atomic coordinates corre-
spond to the phenotype. In AutoDock application, the chromosome consists of real 
valued genes as following, three Cartesian coordinates for translation of the ligand, 
four elements that determine a quaternion that can specify the orientation of the 
ligand, and one real value for every ligand dihedral angle. The genetic algorithm 
starts with picking a number of individuals and initiating a group randomly. Every 
individual in the group is given hypothetically a certain value of genes. A series of 
generations occur and cycle to the farthest possible number or to the most amount 

Fig. 15.2 Diagrammatic presentation of docking box and grid points
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of energy available. One generation is composed of five sequential phases including 
mapping and fitness evaluation, selection, crossover, mutation, and elitist selection. 
The genotype of individuals translates into its parallel phenotype through the map-
ping stage, evaluating therefore the fitness of every individual. The function of fit-
ness and the evaluation of energy are demonstrated in the following subsection, 
calculating the energy of each individual in every step. Then a proportional selec-
tion occurs to choose individuals who can reproduce. Some members are randomly 
chosen by the user parameters of crossover and mutation from the population to go 
under these stages. Once the crossover is performed, the next production of mem-
bers will immediately replace their ancestors to remain the size of population firm. 
The next phase is mutation. Electively, some elite standards defined by the user 
automatically select superior members to move on the next generation. The algo-
rithm repeats along the generations to the stage of meeting one of the termination 
criteria.

15.3.2.4  The AutoDock Fitness Function and Free Energy Calculation

The fitness is a result from the combined energies of the intermolecular interaction 
of ligand-protein and the intramolecular energy of the ligand. AutoDock presents at 
the final docking procedure the following: the fitness (the docked energy), the state 
variables, the coordinates of the docked conformation, and the estimated free energy 
of binding ΔG):
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(15.2)

𝛥G calculation including the solvation effect in AutoDock is shown in Eq. 15.2.
The first term is the Lennard-Jones 12–6 dispersion-repulsion. The second term 

is a, t, based on the angle t, between the probe and the target atom. The third term is 
a screened Coulombic electrostatic potential. The fourth term is a measure of the 
unfavorable entropy of ligand binding due to the restriction of conformational 
degrees of freedom that depends on the number of sp5 bonds in the ligand. Finally, 
the last term is Ntor, which indicates the desolvation effect. In desolvation, the 
approach utilized is the pair-wise, volume-based method of Stouten et al. The fea-
ture that distinguishes this approach is that it suits with the pre-calculated affinity 
grid formulation applied in AutoDock. Partial volumes of nearby protein fragments 
around each atom of the ligand are calculated using an exponential function and 
then summed. This can evaluate and measure the percentage of volume surrounding 
the atom of ligand that is occupied by protein atoms (Morris et al. 2008, 1996). 
The energy of desolvation is calculated after weighting the percentage using the 
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atomic solvation parameter of the ligand atom. The complete procedure can be 
divided into four separate parts: burial of polar atoms in the ligand, burial of a polar 
protein atom, burial of polar and charged atoms in the ligand, and burial of polar 
and charged protein atoms. Major significant results have been presented in many 
experiments through measuring the “hydrophobic effect.” They examined several 
formulations that contained only the volume lost around ligand carbon atoms 
(Morris et al. 2008, 1996). Some issues arise from buried polar atoms. Besides the 
volume- based approach, a simple formulation for solvent transferring of polar 
atoms was applied. A fixed term corresponding to the proper free energy of interaction 
of a polar atom with solvent is estimated, and this is subtracted from the binding 
free energy.

15.3.3  Gold

GOLD application has been used widely in molecular docking since 1997 (Genetic 
algorithms and their use in chemistry, reviews in computational chemistry 1999). 
GOLD stands for Genetic Optimization for Ligand Docking, and it employs a 
genetic algorithm to explore the structural scope. GOLD permits a complete elastic-
ity for noncyclic ligands and the flexibility of partial protein in the area around the 
binding cleft. The docking strategy in GOLD will be evaluated in three stages: 
protein and ligand initialization, implementation of genetic algorithm, and the fitness 
function.

15.3.3.1  Protein and Ligand Initialization

GOLD software accepts the inputs like a point or an atom, and radius, from the 
users to determine the center of protein molecules. It also intakes the docking sphere 
that lay on the binding cleft of that particular protein. The binding mode of some 
receptors is well studied by X-ray crystallography, such as the structure of HLA- 
A2.1 receptors. The other software which can easily point the center of the binding 
cleft is CHARMM (Brooks et al. 2009). Within 10 Å distances around the ligand 
atoms, receptor atoms are determined, and the center of the whole chosen volume is 
found through “stats” option. The coordinates of the center are located as 4.00, 16.1, 
and − 6.70 in x, y, and z directions, respectively. The closest radii suggested to the 
center were 20, 25, and 50 Å. The 20 Å radius was favored due to the ability of 
balancing computational time and accuracy. Figure 3.12 illustrates the calculated 
dock sphere. All proteins are counted as rigid except OH groups of SER, THR, and 
TYR and NH4+ group of LYS around the active site. The ligands can be prepared 
fully flexible. Modest constraints should be considered while prepping the ligands, 
retaining the ring corners, amide bonds, planar nitrogens, and/or internal hydrogen 
bonds that are constant. Other possible constraints are the covalent constraints, 
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distance constraints, H-bond constraints, structure-based constraints, and similarity 
constraints. The preferred number of runs is 10, although it ranges usually from 1 to 
50. The favored format of the protein and ligand files is tripos mol2, although pdb 
can be used sometimes. In case of using pdf format, the program will specify partial 
charges using a modified Tripos force field. But mol2 files have the partial charge 
information; thus, other force fields are applied to prepare the mol2 files.

15.3.3.2  The Implementation of Genetic Algorithm

The genetic algorithm employed by GOLD is steady-state operator-based to repre-
sent the structural shape and binding modes of the ligand. The following 7 steps 
summarize the genetic algorithm used by GOLD: 1. A group of reproduction opera-
tors like crossover or mutation is selected. Every operator is assigned with a certain 
weight. 2. A random population is initially produced and the fitnesses of its mem-
bers determined. 3. Depending on the weight, a specific operator is selected through 
roulette wheel selection. 4. The parents chosen by the operator are selected using 
roulette wheel selection based on the fitness grads. 5. Running the operator will 
result in new offspring chromosomes. The fitness is evaluated for each. 6. If not 
exist formerly in the population, the children substitute the least members fitting in 
the group. 7. Terminate after running 100000 operations, else return to step 3 once 
again. Mutation, crossover, and migration are the operators that have been used. The 
mutation operator brings individuals to the group/population through random 
changes of the rotatable bonds in the protein and ligand. Torsion angle values vary 
between −180° and 180° in step-sizes of 1.4°. Five groups of population are auto-
matically set. Each consists of 100 individuals. The crossover operator obtains the 
exchange of chromosomes between the individuals. The migration operator creates 
copies from individuals in many groups. Operators were selected using roulette 
wheel selection depending on the operator weights. Weights were selected based on 
the occurrence of crossover and mutation in similar probability, while the migration 
only applied 5% of the time. The genetic algorithm stops once it reached the opti-
mum number of operators (which is mostly 100,000). The ligand then positions in 
the active site using a least-squares fitting procedure, after the binding cleft is ready. 
The final step will evaluate and determine the fitness score.

15.3.3.3  The Fitness Function

Scoring function in GOLD is presented in two styles: ChemScore and GoldScore. 
In ChemScore, the scoring system is built empirically on the existing measures of 
binding affinities for a group of 82 protein-ligand complexes. It is trained by regres-
sion against measured affinity data. Equation 1 illustrates the free energy calcula-
tion of the binding (ΔGbinding):

 
∆ ∆ ∆ ∆ ∆ ∆G G G G G Gbinding hbond metal lipo rot= + + + +0  
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Every element in this equation is a final outcome of an expression depending on 
the size of a specific physical contribution to free energy and a scale factor deter-
mined by regression. The final result of ChemScore is found after combining a clash 
penalty and internal torsion terms that can block close contacts in docking and poor 
internal conformations. Covalent and constraint scores can be added as well:

 
ChemScore binding clash internal internal covalent co= + + +∆G P C P C P vvalent constraint+( )P

 

Four main objects build up the functional system of the GoldScore fitness: 
protein- ligand hydrogen bond energy (external H-bond), protein-ligand van der 
Waals (vdw) energy (external vdw), ligand internal vdw energy (internal vdw), and 
ligand torsional strain energy (internal torsion). A fifth additional element may be 
included, which is the ligand intramolecular hydrogen bond energy (internal 
H-bond). GOLD parameter files (editable by users) contain the fitness function 
empirical parameters: hydrogen bond energies, atom radii and polarizabilities, tor-
sion potentials, hydrogen bond directionalities, etc. The score of external vdw is 
multiplied by a factor of 1.575 when the score of the total fitness is calculated. This 
is used as an empirical correction to encourage hydrophobic contact of protein- 
ligand complex. The final value of GoldScore is represented in the next equation:

 
Gold Score H Bond Energy Internal Energy Complex Energy= − − − + − +( )  

The first element refers to the hydrogen binding energy that can be found by 
summing all donor and acceptor atoms that are able to form hydrogen bond. The 
second term expresses the internal energy of the ligand, which is the combination of 
the ligand steric and torsional energies. Some molecular mechanics applications are 
used to compute this value. The form (4) with 6–12 potential is used to calculate the 
steric energy:
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The Tripos force field of the following form is used to calculate the torsional 
energy Eijkl:
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The final element is an energy gathered from the steric energy of interaction 
between the protein and the ligand. For this calculation, the following formula of 
4–8 potential with linear cutoff is recruited:
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The cutoff distance used was 1.5 times the sum of the van der Waals radii of the 
atoms. The 4–8 potential was parametrized to reproduce the minimum of the more 
usual 6–12 potential.

15.4  Applications of Docking

In the past decade, a huge amount of effort has been invested in the field of compu-
tational prediction and scoring function tools to provide efficient results for docking 
and other molecular interactions. Major progress has been achieved in predicting 
ligand-target binding modes via computer programs, and several review articles 
discussed this emerging field of science. DOCK is successfully applied when two 
main subjects are fulfilled: the in silico virtual screen with high throughput for sub-
strates with high-affinity receptor and the computational design of selective inhibi-
tors for specific receptor. Former docking experiments determined aminoglycosides 
for its ability to bond with the standard A-RNA duplex not the B-DNA form. 
Conformational evidence of NMR solvent isotope shift parameters shows that livi-
domycin (a proposed calculated compound) significantly enhances the results of 
docking through binding to the major groove of RNA, thus increasing the stability 
of RNA duplex. A study published by Filikov (Filikov et al. 2000; James et al. 2000) 
stated that lead compounds damage the binding of HIV-1 TART, which is an impor-
tant interaction in viral replication. The newly published work from James et al. used 
DOCK and ICM with more advanced scoring scheme to produce a sub-micro-molar 
lead with a novel chemotype that showed anti-HIV activity in a cellular assay 
(Banaganapalli et al. 2013a; Banaganapalli et al. 2013b).

15.5  Protocol of AutoDock

Steps in Ligand-Receptor Docking Using AutoDock Tool
Lead compounds can be designed by drawing two-dimensional structure and then 
converting it into three-dimensional structure through the online server PRODRG. 
Lead compounds should be drawn on a plain white background and transferred to 
PRODRG server. Now the protocol given below provides complete information and 
demonstrates how to convert a 2D lead molecule into 3D structure.

 1. Click the Internet explorer icon on the desktop and type the website at the address 
toolbar as www.google.co.in.

 2. Type the word PRODRG server or directly go to the following link: http://
davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg/submit.html (Fig. 15.3).
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 3. Click on Draw Molecule with JME (before that you need to register by giving an 
email address). A new small window will open with white background. This 
window called as drawing window needs a Java run-time environment. Before 
drawing any molecule, you should install this Java software. You can install 
the Java run-time software provided in the workshop CD. Just double-click on 
the setup icon and follow the instructions (Fig. 15.4).

Fig. 15.3 Home page of PRODRG web server

Fig. 15.4 Java run-time view from PRODRG
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 4. A small window appears with basic structures of chemicals. Now you have to 
draw a ligand molecule as shown below in JME. Select suitable molecules and 
add one by one to the basic lead molecule. If you need N, O, and P, get it from 
the left bar containing atoms. Put the suitable atoms with minimum knowledge 
in chemistry and chemoinformatics. If you do any mistake, click DEL or 
CLR. Take care while using these buttons. With right-click you can rotate the 
molecule and left-click to move the molecule in all four sides.

Now click the button transfer to PRODRG. You can observe the coordinates in the 
main window. Select chirality, full charges, and energy minimization as yes as 
shown below. Now click on Run PRODRG. Wait for 2 min to get 3D coordinate 
files for AutoDock 3.0 (Fig. 15.5).

Copy the total matter into the new text document and save as “drg.pdbq” onto the 
desktop. This file will be used for docking purpose.

You can prepare such type molecules by just altering functional groups; halogens 
and alkyl groups with minimum knowledge in chemistry will give very good 
lead molecules (Fig. 15.6).

The drg.pdbq file can be used as lead compound to dock into the protein molecules. We 
will use this molecule in the next session for protein and drug interaction studies.

Overview of the method in flow chart
Open www.google.co.in>>type.PRODRG SERVER> > Select prodrg> > Click 
Draw molecule JME> > Draw the molecule> > Transfer to Prodrg> > chiral-
ity  >  YES>  >  Full charges  >  YES>  >  energy minimization  >  YES>  >  Run 
PRODRG> > selectAUTODOCK3.0 PDBQ FILE> > copy the content> > open 
text document> > paste the content into the text document> > save as “drg.pdbq”on 
desktop> > close the new text document

Fig. 15.5 PRODRG home page window and coordinate pasting window
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Preparation of Receptor Files for AutoDock Tools
AutoDock tools which you are using in the present workshop are having academic 
license only. It cannot be distributed by any institute without permission from soft-
ware owners. This software is used for validation and investigation of  interaction 
between the ligand and receptor. The ligand may be any lead compound or drug 
molecule in the other receptor with protein or enzyme. You have already prepared 
the ligand molecule with PRODRG server suitable for AutoDock tool 3.0 pdbq.

Now this is the time to prepare the receptor file for docking purpose, but there is 
a need to convert the receptor file from protein data bank format to pdbqs format. 
First you have to do all the following steps as shown below. You should be very 
careful in doing each step and do not miss any step. If you miss any step, you may 
not get docking and again you have to start from the beginning.

Download the receptor as follows:

Open www.google.co.in>>type rcsb> > select protein data bank> > type 1TPP in 
search box> > click search> > wait> > click download files at left side> > click 
on Pdb file> > save > > on desktop (Fig. 15.7).

The file will be saved onto the desktop with the name 1TPP in the pdb format. This 
file can be viewed with WordPad and delete so4, HOH, and Ca molecules.

Copy the APA and connect series and paste into new text document and save as apa. 
Now save the modified pdb file with trp.pdb. This file contains only amino acids 
but not any heteroatoms.

As we cut the heteroatoms, the missing C-terminal oxygen atom issue can be recti-
fied by spdbv software which has very good option to do this.

Fig. 15.6 Output file of PRODRG in AutoDock format
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Double-click on spdbv folder>  >  double-click spdbv icon>  >  new window will 
appear> > file> > open pdb file> > select all> > build>add C-terminal oxygen 
(OXT).> > file > > save> > layer> > save as trp.Pdb. Trp file is completely modi-
fied without ligands and water molecules. This molecule is read to input into 
AutoDock software (Fig. 15.8)

Copy the complete apa file and paste in the PRODRG server for the generation of 
pdbq file for AutoDock.

Select yes option for each one like chirality, full charges, energy minimiza-
tion> > run prodrg> > click enter key.

Now the lead molecule or drug molecule is ready for dock for protein is required for 
this purpose.

Open AutoDock tools from the desktop, and you can visualize as follows:

Convert trp.pdb file to pdbqs file

Select the trp.pdb file from the desktop and load the repair commands for histidine use.

Fig. 15.8 Editing PDB file using SWISS-MODEL software

Fig. 15.7 Retriving receptor file from RCSB database
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File> > load module> > repair commands> > load> > dismiss
Edit> Hydrogens>Add> Select “Ploar Only”
Fix the histidine residues
Edit>Hydrogens>Edit Histidine Hydrogens, and change the selection from +0 to 0, 

HD1, and then click apply following by dismiss

Add the partial atomic charges
Edit> charges> add kollman charges
Edit> charges> check total on residues – and fix using spread charge deficit

Here choose…(AG3) means you are selecting for AutoDock tools 3.0 version. So 
every time choose the ligand and receptor for AG3 or AD3 only.

Automatically solvent parameters are added to receptor and charges; the molecule 
is ready to be saved into trp.pdbqs format.

Grid> > set map types> > choose ligand (AG3)> > select ligand apa and accept the 
atom types.

Grid> > Grid box> > enter the X,Y and Z axis values-1.573,14.473,19.036, respec-
tively, and leave all the values as default > > file> > close saving current.

Now save the grid file in GPF format, Grid> > Output> > save GPF (AG3)

Making the docking parameter file (dpf)

Docking> > Macromolecule> > set File name..(AD3)> > select trp.pdbqs file

Docking> > ligand> > choose….(AD3)

Accept all the default values and continue as procedure below.

Docking> > output> > Genetic Algorithm..(AD3)> > save the file trp.dpf

Now this is the time to run the docking files from the command line

Close all the windows, and click left corner windows start button> > run> > type 
cmd> > ok

Type as follows:
Cd\
Cd autodock
Now you can run AutoGrid program (AD3)

<autodock>autogrid3 –p trp.gpf –l trp.glg

Wait for 5 min to complete the program, and you can fine message indication that 
program is successfully completed (Fig. 15.9).

Now run again on command line for AutoDock program (AD3)
<autodock>autodock3 –p trp.dpf –l trp.dlg
Wait for 30 min to complete the program.

Then type exit and close all the windows.

To analyze the results, click on AutoDock tools, and follow the steps
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File> > read molecule> > trp.pdbqs

Analyze> > docking> > open> > select trp.dlg file.

Color > > by atom type

Analyze> > conformations> > play

You can see the docking hits with amino acids within the protein molecule.

Analyze> > docking> > open> > ligand molecule will appear on the screen

Analyze> > macromolecule> > open> > select tpp.pdbqs or open from AutoDock 
folder.

To view molecular surface of the macromolecule, just click on MS option as shown 
in the above figure. You can also remove lines by clicking on Lines once. Now 
rotate the molecule with the right mouse. To rotate the molecule, hold the right- 
click, and move the mouse; if you want to zoom, just hold on the shift key, and 
right-click move. Select apa as S&B >> color by atom type.

Receptor can be colored by selecting tpp, and color > > color by molecule> > give 
tick on MSMS-mol> > color molecule will appear.

Fig. 15.9 Steps in preparation of receptor and ligand files for docking
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Conformations > > play> > just click on & icon and give all ticks at a time, and 
observe the docking energies and conformation. At this stage you can see anima-
tion of ligand and protein interaction of all calculated values (Fig. 15.10).

15.6  Conclusion

 Docking is a molecular modeling approach which examines how a protein interacts 
with small molecules.  The molecular interaction potential of between protein or 
nucleic acids with small molecules forms a supramolecular complex whose stability 
could turn influence their biological functions. This docking method has potential 
uses and applications in different phases of drug discovery like in conducting 
structure- activity studies, in discovering potential leads and their optimization and 
also in exploring binding affinities between query molecules. In the current chapter, 
we have described the basic principle and fundamental steps involved in molecular 
docking. We have also provided an overview of some commonly used 

Fig. 15.10 Molecular visulation of receptor and ligand in MGL tools
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computational programs in molecular docking and structural analysis. Although 
molecular docking can predict the potential interactions between small molecules 
and receptors, the elucidation of accurate interactions can only be confirmed by 
doing laboratory based experiments.
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16.1  Introduction

PCR is the abbreviation of polymerase chain reaction. It is the most scientific evo-
lutionary technique in the molecular biology. PCR can copy a segment of the DNA 
into millions of copies (amplicons) in a short period. Amplification process can be 
carried out via thermocycler, a device that facilitates multiple rounds of temperature- 
sensitive cycles. In brief, PCR is a thermal technique that requires the complemen-
tary sequence of oligonucleotides, desired DNA targeted segment to initiate the 
process of polymerization by the steady actions of polymerase enzyme, which 
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incorporates the new dNTPs to the template DNA strand, and synthesizes multiple 
copies of new double-stranded DNAs.

Back in 1983, PCR was originally inspired by Kary Mullis, a Nobel Prize- 
winning American biochemist who initially started to use fresh polymerase enzyme 
extracted from an E. coli bacteria. Heat cycles would degrade the integrity of the 
enzyme. At the time, the only plausible solution was to continuously add the poly-
merase enzyme in each cycle of the reaction to assure the success of the reaction.

Mullis and his team initially presented the idea at the American Society for 
Human Genetics annual meeting in 1985. Previously available PCR techniques 
would have taken a week to complete the amplification of the targeted sequence 
(Saiki et al. 1985). Mullis successfully experimented his technique to amplify the 
codon 6 of beta globin sequence in less than 1 day. Following that year, in 1986, 
Henry Erlich had replaced the E. coli polymerase with a more heat-stable Taq poly-
merase from Thermus aquaticus, a bacterium that lives in hot springs and can toler-
ate the heat without any damages to its enzymes (Saiki et al. 1988). Finally, 1987 
marks the year when the thermocycler machine was developed and adjusted to be an 
instrument of a programed heating mechanism. In 1993 Kary Mullis received the 
Nobel Prize for his great invention of the PCR which would forever reflect a huge 
impact on the genomics and biotechnology.

Several primary components are necessary for the methodology of the PCR to 
have successful results, and they are as follows:

 (a) Extracted and purified DNA template harboring a target sequence to amplify.
 (b) DNA polymerase enzyme, to assemble the DNA strands that are complemen-

tary to the targeted sequence.
 (c) DNA primers: two separate primer oligonucleotides used (1) in the forward 5′ 

prime of the DNA strand, more specifically to be annealed to the sense strand 
and  (2) reverse primer that acts primarily on the anti-sense strand of the 
DNA. Their presence is essential to anchor the polymerase enzyme and guide 
its action to start and to be the specific targeted region of the DNA.

 (d) Deoxynucleotide triphosphates (dNTPs), free single base pairs (A, G, C, T). 
They serve as building blocks for the newly synthesized strands.

 (e) Reaction buffers and thermocycler (Fig. 16.1).

PCR has become a cornerstone to multiple foundations of analytical, diagnostic, 
and many interdisciplinary sciences of molecular biology and molecular genetics to 
be precise. It is used in cytogenetic analysis, diagnosis of infections, paternity tests, 
step in sequencing, and forensics, etc. (Table 16.1).

16.2  Methods of PCR

In typical PCR there are three main steps to the process, repeated 25–30 times to 
have millions of DNA template copies (Fig. 16.2).
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Step (1): Denaturation

This is the first step where a double-stranded DNA is unzipped into single-stranded 
DNA by breaking the hydrogen bonds that link the two strands of the DNA. A 
temperature range of 90 –95 °C is the ideal one to separate the two DNA strands. 
Usually it starts with initial denaturation step for 3 min and then another 30 s to 
complete the denaturation, but the timing could be different from one reaction to 
another, depending on the sequence content. For example, GC-rich sequence 
takes more time than AT-rich sequence, due to the triple and double bonds 
between the base pairs, respectively.

Step (2): Annealing

Well-designed primers will bind to the complementary targeted single-stranded 
DNA after the denaturation step with free 3′ end to serve as starting point for the 
synthesis to take place. 55–70  °C is the temperature range for the primers to 
anneal, usually for 30  s. Forward and reverse primer annealing are the most 
important steps to have an accurate result which is a challenge for the scientists 
to design the best primers for their experiments.

Step (3): Extension (Elongation)

Extension is the final step to have the amplicons ready. The temperature will be 
raised up to 70–75  °C, and the polymerase enzyme will start to function by 
 adding the dNTPs to the 3′ end of the primer and making new copies from the 

Fig. 16.1 Primer annealing to specific known region of genomic DNA
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Table 16.1 Types and application of different PCR

Types of PCR Application

Multiplex PCR Multiple PCR reactions in one single tube. Key applications include 
identification of pathogens such as lower respiratory tract infections, 
detection of RNA, and mutation analysis in the area of genetics. Also used in 
the process such as mutation detection and gene detection

Nested PCR Refers to a modified PCR that helps in the reduction of non-specified binding 
products based on the amplification of different and unexpected binding 
sites. The two sets of primers in this process are crucial toward reducing the 
rate of contamination from unwanted products such as primer target 
sequences and dimers

Inverse PCR Inverse PCR assay is a useful tool in the analysis of rare structures associated 
with mutational integrons found in areas of class 1 integrons

Reverse 
interpretation 
PCR

Applies a process of grouping two DNA strands to promote the 
polymerization and duplication of the strand. Mainly used in the area of 
genetics for cloning research and development.

Reverse 
transcription 
PCR (RR-PCR)

Majorly applied in the area of molecular biology in the quantification and 
detection of RNA expression from a single cell

Real-time PCR 
(qPCR)

Used to investigate the expression of samples in order to quantitate changes 
in gene expression. Therefore it is used in basic research and diagnostics 
such as quantifying different forms of gene expression, diagnosis of gene 
abnormalities, cancer diagnosis, and detection of infectious diseases 
including new forms of flu

Arbitrary primer 
(AP-PCR)

Used in the process of fingerprinting genomes to detect variations in the 
human DNA and identify various types of bacterial strains present in similar 
species such as the process of Streptococcus mutans genotyping. 
Streptococcus mutans refers to a bacterium present in the oral cavity that 
contributes to tooth decay (Tabchoury et al. 2008)

Allele-specific 
PCR

This procedure is important for the determination of various types of 
single-nucleotide polymorphisms for HLA typing, model and non-model 
organizations, and paternity testing (Gaudet et al. 2009)

Assembly PCR Used in the combination of large forms of DNA oligonucleotides and applied 
in genetics as a mechanism for the amplification of DNA sequences and 
development of novel synthetic genes

Degenerate PCR Mainly applied in the area of genetics for the process of amplification and 
matching of multiple genes from related families. Used as major tool in gene 
cloning

Dial-out PCR Used in biological processes to accurately identify and retrieve DNA 
molecules in all processes involving gene synthesis.

Traditional PCR Carries out the amplification of various forms of nucleic acid for gene 
sequencing and cloning by estimating the quantity of PCR product on 
completion of several PCR cycles

Digital PCR More advanced than the traditional PCR as it produces absolute minute 
amounts of nucleic acid where it is applied in the process of rare sequence 
detection and analysis of rare gene expression

(continued)
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template (dNTPs are dATPs, dTTPs, dGTPs, and dCTPs). Extra 5-min final 
extension time can be added to make sure that the polymerase has done its job 
properly.

Tips in Using PCR

• Primer length: the accuracy and specificity in having good results depend on the 
primer oligonucleotide length. An 18–24 base pair primers appeared to be the 
ideal length (Dieffenbach et al. 1993). Many stability complications in the reac-
tion could result from primers shorter or greater than this length range.

• G–C content: it must follow the range of 40–60%.
• 1 ng–1μ of the genomic DNA template is used in the reaction or 1 pg–1 ng in the 

plasmid or viral template (Rychlik et al. 1990). Higher concentration of DNA 
template decreases the specificity of the amplicon.

Table 16.1 (continued)

Types of PCR Application

Inter-simple 
sequence PCR

The process of obtaining multilocus fingerprinting profiles is applied in 
studies on genetic identity and the process of quantifying issues of genome 
instability such as deletions and amplifications in cases of human sporadic 
tumors

Hot start PCR Improves the process of DNA analysis through the use of polymerase 
inhibitors in lower temperatures to inactivate the DNA polymerase to 
improve specificity for target genes where it is mainly applied in long- 
distance PCR experiments

In silico PCR Helps in the identification of newly designed primers and efficiently supports 
the development of primer specificity for multi-exon genes for practical 
investigation procedures in molecular diagnosis and forensic DNA typing

Suicide PCR Helps in the process of molecular identification of causative organisms 
(agents) of infections and diseases through assessment of specific biotypes 
such as Yersinia pestis based on the analysis of intergenic spacer DNA

Late PCR Utilizes primer pairs intentionally fashioned for use at varied concentrations 
to generate single-stranded DNA. It resolves the problems associated with 
conventional PCR primers: optimization difficulties, inefficiencies, and 
promotion of non-specific amplification

Long-range PCR Helps to amplify DNA lengths that routine reagents or PCR methods cannot 
typically amplify. For the simple templates of DNA, polymerase that is 
optimized for long PCR can amplify equal to 30 kb. For genomic templates 
that are complex, the typical target is normally 20 kb

In situ PCR Helps to detect minute amounts of single-copy or rare nucleic acid sequences 
in paraffin-embedded or frozen tissue sections or cells for the localization of 
the sequences within the cells. This PCR approach’s principle comprises 
tissue fixing in a bid to preserve the cell morphology and consequent 
treatment with proteolytic digestion to give the PCR reagents access to the 
target DNA

Colony PCR Helps to determine the absence or presence of insert DNA in plasmid 
constructs. It also assists in determining insert orientation
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16.3  Guidelines for Primer Design for PCR

DNA amplification, the process of generating multiple copies of a DNA sequence, 
can be done by polymerase chain reaction (PCR). The effectiveness of PCR is 
largely dependent on how efficient the designed primers are (Abd-Elsalam 2003; He 
et al. 1994). There are multiple factors like the primer-template association kinetics, 
the stability of the duplex formed between the primer and template in the formation 
of mismatched nucleotides, and the ability of the polymerase to identify and repair 
mismatched duplex (Abd-Elsalam 2003; Dieffenbach et al. 1993) that are known to 
have influenced the oligonucleotides to act as ideal PCR primers. For a primer to be 
able to amplify a specific target sequence, it must possess specific characteristics, 
and these include the length of the primer, the percent of guanine and cytosine 
nucleotides, the five-prime end stability, and the three-prime end specificity (Abd-
Elsalam 2003; Dieffenbach et al. 1993). If the PCR primer was poorly designed, this 
would result in an unsuccessful PCR reaction because the primer didn’t work 
 properly; it may result in little or no product formation due to multiple errors that 
resulted in dimer formation or non-specific sequence amplification (Abd-Elsalam 
2003; Dieffenbach et  al. 1993). The designed primer plays a major role in the  
PCR product because it  determines its length, melting temperature, and yield 

Fig. 16.2 Steps of PCR DNA amplification: denaturation, primer annealing, and synthesis of 
complementary strands
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(Abd-Elsalam 2003; Dieffenbach et  al. 1993). For a successful PCR reaction, a 
well-designed primer is critical to ensure high- yield product; following the below 
simple guidelines, one can ensure to design a good primer.

Primer length The primer length refers to how many nucleotides the primer 
sequence has. Primer length is a critical parameter for a successful PCR reaction; 
the specificity, temperature, and time of annealing depend on the length of the 
primer (Abd-Elsalam 2003; Wu et al. 1991). A typical preferred length of a primer 
is between 18 and 30 nucleotides. The minimum number of nucleotides for the 
primer should be 18 so that problems such as secondary hybridization sites can be 
avoided. Also, it is important to ensure that the primer doesn’t contain multiple 
stretches of a single base; one must avoid four or more guanine and cytosine in a 
row (Abd-Elsalam 2003).

Melting temperature (Tm) The melting temperature refers to the temperature 
required to dissociate the DNA duplex to a single strand. For optimal results, it is 
best that the melting temperature for the primers is to be between 52 and 
58  °C.  Designing primers that have a melting temperature of 65  °C and above 
should be avoided because it might initiate a secondary annealing reaction (Abd- 
Elsalam 2003). Wallace et al. (1979) proposed a formula to calculate the melting 
temperature of primers based on oligonucleotides between 18 and 30 bases: 
Tm = 2(A + T) + 4(G + C).

GC content  The percentage of guanine and cytosine nucleotides in a primer is an 
essential component of the primer as it is associated with the annealing strength. 
Based on various observations, it is best to have a GC primer content between 45% 
and 60% (Abd-Elsalam 2003; Dieffenbach et al. 1993). If primers had GC content 
below 50, it is advisable that the primer sequence should be extended above 18 
bases, so that melting temperature and annealing temperature requirements are 
 fulfilled (Abd-Elsalam 2003; Rychlik and Rhoads 1989).

3′-end sequence The role of the 3′-terminal position of PCR primers is in control-
ling mis-priming (Abd-Elsalam 2003; Kwok et al. 1990). When it comes to sticky 
ends, the 5′-end of the primer should be stickier than the 3′-end. If 3′-ends were 
sticky with multiple GC contents, this can lead to multiple sites annealing on the 
template sequence. However, it is advisable that the 3′-end has guanine or cytosine, 
but one must take into account the sticky-end rule (Abd-Elsalam 2003; Sheffield 
et al. 1989).

Dimers and false priming cause misleading results When it comes to designing 
primers, one must be careful of complementary sequences within the primer. The 
designed primers must not have complementary sequences that result in the primers 
forming hairpins by folding back on itself. The folding will cause the primer not to 
work properly, and it will affect the overall PCR reaction (Abd-Elsalam  2003; 
Breslauer et al. 1986). However, if hairpins were formed below 50 °C, these  hairpins 
can be ignored because they will not cause that much of a problem. As a general 
guideline, there shouldn’t be any sequences that will cause the primer to anneal to 

16 In Silico PCR



362

itself or other primers in the PCR reaction; this will cause what is known as primer 
dimer (Abd-Elsalam 2003).

Specificity It is very important to consider specificity when designing a primer 
because choosing random bases will only result in unsuccessful results when ampli-
fied. The primer must contain a specific sequence that will be targeted on the DNA 
sequence being amplified; designing a primer with multiple repetitive sequences 
will show a smear of amplified DNA in the results (Abd-Elsalam 2003).

Degenerate primers Degenerate primers are defined as a combination of primers 
that have multiple substitutions of different bases; they are similar, but not the same. 
The role of degenerate primers lies in the process of amplifying a sequence that 
presents different protein sequences. Degenerate primers must be taken into account 
when designing primers to ensure that the final protein sequences are not altered 
(Abd-Elsalam 2003). One can use different computer programming to design spe-
cific degenerate primers (Abd-Elsalam 2003; Chen and Zhu 1997).

Complementary primer sequences When designing primers, the sequence 
should not contain sequence homology within itself, which is known as intra-primer 
homology; designing primers with sequence homology will lead to the occurrence 
of snapback. Another problem that may occur with the complementary sequence is 
homology sequence content within the primer sequence itself, occurring in the mid-
dle regions of the two primers, which can interfere with hybridization. Primer dimer 
formation will occur if sequence homology occurred at 3′-end of the primers 
 (Abd- Elsalam 2003).

Other recommendations When it comes to amplification, the primer concentra-
tion should be in the range of 0.1–0.5 μm. Before starting the PCR, and after design-
ing a primer, one can use computer analysis software to analyze the designed primer 
to ensure that the primer will work properly by evaluating the mentioned guidelines 
(Abd-Elsalam 2003).

16.4  In Silico Designing PCR Primers Using  
Bioinformatics Tools

Primer-BLAST tool is being used widely for designing optimized primers for a 
target DNA sequence region. The algorithms of the tool were originally developed 
at NCBI to assist users in their quest to easily and efficiently design primers that are 
specific and intended for target region. In principle, Primer-BLAST engages 
Primer3 software to design PCR primers and then turns to BLAST to execute a 
global alignment algorithm to screen primers against user-selected database in order 
to avoid primer pairs (all combinations including forward-reverse primer pair, 
forward- forward, as well as reverse-reverse pairs) that can cause non-specific ampli-
fications. Currently there are many online tools available to the design and valida-
tion of primer (Table 16.2). In this chapter as an example, we will design a primer 
for the gene IL10 exon number 5 using NCBI primer-BLAST tool.
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Table 16.2 Currently available online tools in design validation of primer sequence

Primer name Description Site

CODEHOP COnsensus-DEgenerate Hybrid 
Oligonucleotide Primer; design 
degenerate PCR primer. Will accept 
unaligned sequences

http://blocks.fhcrc.org/codehop.html

Gene Fisher A primer design tool for normal or 
degenerate primers. Will accept 
unaligned sequences

http://bibiserv.techfak.uni-bielefeld.de/
genefisher/

Primer3 Inclusive hybridization probe and 
PCR primer design tool

http://www.justbio.com/primer/index.
php

Web Primer Design primers for both PCR and 
sequencing purposes

https://www.yeastgenome.org/cgi-bin/
web-primer?name=YML058W

PCR Designer For restriction analysis of sequence 
mutations

http://cedar.genetics.soton.ac.uk/
public_html/primer.html

Primo Pro 3.4 Decreasing the possibility of 
random primering which results in 
reduced PCR noise

http://www.changbioscience.com/
primo/primo.html

FAS-DPD A package to design degenerate 
primers for PCR

https://omictools.com/fas-dpd-tool

EPRIMER3 Picks PCR primers and 
hybridization oligos (EMBOSS)

http://bioinfo.nhri.org.tw/cgi-bin/
emboss/eprimer3

PrimerQuest A primer design tool https://eu.idtdna.com/Primerquest/
Home/Index

Tool name Description Site
MethPrimer MethPrimer design primers for 

methylation PCRs
http://www.urogene.org/methprimer/

MEDUSA A tool for the assessment of PCR 
primer and automatic selection

http://www.mybiosoftware.com/
medusa-selection-visual-assessment-
pcr-primer-pair.html

Eurofins 
genomics

A tool for designing PCR primer as 
well as primer for sequencing 
purposes

https://www.eurofinsgenomics.eu/en/
dna-rna-oligonucleotides/oligo-tools/
primer-design-tools/

Primer plus3 A new improved web interface to 
the common used one Primer3 
primer design program

http://www.bioinformatics.nl/cgi-bin/
primer3plus/primer3plus.cgi

Genscript GenScript online PCR primers 
designs tool

https://www.genscript.com/tools/
pcr-primers-designer

Primer3:WWW 
primer tool

This site comprise a very 
controlling PCR primer design 
program allowing the control of the 
size of product desired, primer size 
and Tm range, and presence/
absence of a 3’-GC clamp

http://biotools.umassmed.edu/bioapps/
primer3_www.cgi

BiSearch Primer design and search tool. This 
tool is useful for primer design for 
any DNA template and particularly 
for bisulfite-treated genomes

http://bisearch.enzim.
hu/?m=genompsearch

Primer-BLAST Was established at NCBI. Primer- 
BLAST uses Primer3 to design 
PCR primers

https://www.ncbi.nlm.nih.gov/tools/
primer-blast/

(continued)
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https://www.eurofinsgenomics.eu/en/dna-rna-oligonucleotides/oligo-tools/primer-design-tools/
https://www.eurofinsgenomics.eu/en/dna-rna-oligonucleotides/oligo-tools/primer-design-tools/
https://www.eurofinsgenomics.eu/en/dna-rna-oligonucleotides/oligo-tools/primer-design-tools/
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
https://www.genscript.com/tools/pcr-primers-designer
https://www.genscript.com/tools/pcr-primers-designer
http://biotools.umassmed.edu/bioapps/primer3_www.cgi
http://biotools.umassmed.edu/bioapps/primer3_www.cgi
http://bisearch.enzim.hu/?m=genompsearch
http://bisearch.enzim.hu/?m=genompsearch
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 16.2 (continued)

Tool name Description Site

Primer design-M Includes some options for 
multiple-primer design, it can 
design walking primers that cover 
long DNA targets. It can also 
minimize primer dimerization

https://www.hiv.lanl.gov/content/
sequence/PRIMER_DESIGN/primer_
design.html

Primer Designer 
Tool

Primer designer tool for PCR and 
Sanger sequencing

https://www.thermofisher.com/sa/en/
home/life-science/sequencing/
sanger-sequencing/pre-designed-
primers-pcr-sanger-sequencing.html

MFEprimer MFEprimer utilizes a k-mer index 
algorithm to accelerate the 
exploration process for primer 
binding sites

http://mfeprimer.igenetech.com

Primer4 clades Design PCR primers for 
amplification of novel sequences 
from metagenomics DNA or from 
uncharacterized organisms

http://maya.ccg.unam.mx/
primers4clades/index.html#0

Flexi® Vector 
Primer Design 
Tool

This design tool will design PCR 
primers to use it with Flexi Cloning 
System Vectors which will amplify 
a compatible coding region from 
the input sequence

https://worldwide.promega.com/
resources/tools/
flexi-vector-primer-design-tool/

primerx Systematized design of mutagenic 
primers for site-directed 
mutagenesis

http://www.bioinformatics.org/
primerx/cgi-bin/DNA_1.cgi

Quant prime Automated tool for primer pair 
design for qPCR

http://quantprime.mpimp-golm.mpg.de

The first step In order to design a primer for IL10 gene, it is initially important to 
import the target DNA sequence from NCBI database. To do this, go to NCBI web-
site, and select the option “Gene” from “All Database,” and then type the gene 
symbol in the nearby search box which will then direct you to the main entry page 
of the gene of interest. “Gene” main entry would usually contain additional useful 
entries that link associations such as genomic context, genomic region, and tran-
script identification which can add a supportive base to the overall understanding of 
the sequence structure of the gene (Fig. 16.3).

Second step To the left of the main entry of “Gene,” under the section “Related 
Information,” the option “RefSeq Gene” will direct the user to an open-access, 
annotated, and curated form of the genomic sequence as well as the genomic 
context of IL10. In essence this entry will provide the sequence of IL10 exons to 
automatically distinguish and easily jump through any of its featured exons, cDNA, 
or even mRNA equivalent sequences.
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Fig. 16.3 PCR primer d s 1 to 4

Third step Additional features can be highlighted by clicking on “Highlight 
Sequence Features” tab, as shown below, to the top right side of the current page. 
It activates the feature search bar that appears at the bottom of the display which can 
deliver the option “Exon” to automatically annotate the corresponding base pairs 
of exon 5 in the display as shown below. Using the left- or right-pointed arrows 
will facilitate a smooth traveling across the gene sequence of base pairs for faster 
reaching of the intended exon.

Fourth step  By using the “FASTA” command at the bottom of the page, user will 
be given the opportunity to distinguish and display the annotated sequence of exon 
5, in FASTA format, with a reference GI entry ID: NG_012088.1, in a separate 
window. GenInfo Identifier is a simple series of digits that are assigned consecu-
tively to each sequence record processed by NCBI.
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Fifth step In the separate window, NCBI established a default algorithm to design 
and test primers for this sequence using Primer-BLAST, which can be accessed 
through “Pick Primers” option under the tab “Analyzed Sequence” to the right of 
the screen (Fig. 16.4).

Sixth step Primer-BLAST is a tool to find specific primers to the desired PCR 
template using Primer3 and BLAST. When activated, user should paste the FASTA 
sequence of exon 5 DNA, or there can be the option to paste its unique gi number 
(NG_012088.1), and in both cases Primer-BLAST settings will learn to generate 
primers that are specific to exon 5.

There are of course additional features present to restrict the search of Primer- 
BLAST in order to limit the number of generated primer sets. There is an option to 
design primers that are site-specific within the target sequence, knowing the nucleo-

Fig. 16.4 PCR primer designing steps 5 to 8

B. Banaganapalli et al.



367

tide positions of the desired site by using “Range” dedicated entry. Nucleotide posi-
tions refer to the base numbers as per their arrangement in the annotated sequence 
segment on the plus strand of target template (“From” position should be smaller 
than “To” position for any given primer). For example, if the desired PCR product 
is located between nucleotide in position 100 and position 1000 on the template, 
then, and as for the forward primer, the command “From” can be set to 100 and 
reverse primer “To” to 1000.

It is also possible to investigate known designed primers to check for their unique 
actions to anneal exclusively to the area surrounding exon 5 only by entering the 
actual sequence of the forward primer into the search box designated as “Plus stand” 
under the section of the “Primer Parameters.” Such analysis can be done separately 
for each primer, or both primers (forward and reverse) can be entered at once. 
Reverse sequence of reverse primer can go into the search box designated as “minus 
Strand” under the same section. Preferred PCR product size can also be predeter-
mined to set Primer-BLAST to identify primers to amplify specific size product. In 
the entry “PCR product Size” under the section “Primer Parameters,” for example, 
the minimum and maximum product size can be set to amplify, no more than 400 
base pairs and no less than 200 base pairs, assuming that that is where the area of 
research interest lies.

In the Primer Pair Specificity Checking parameters section, selecting the appro-
priate source organism, the smallest database in addition to choosing the nonredun-
dant (nr) database will generate precise results and are likely to limit the searching 
area for Primer-BLAST.

Seventh step After the selection of “Pick Primers,” it is optional to view the gener-
ated results in a separate window. The search engine of Primer-BLAST will perform 
a quick database scan to detect PCR templates that are highly similar to the query 
sequence (pasted nucleotides sequence), which will be used for the selection of 
primers.

Eighth step Primer-BLAST has already generated set(s) of primers dedicated to 
the input PCR template (NG_01288.1) of the gene IL10, exon 5 sequence. By the 
selection of nr database, generated primers are most likely site-specific and less 
likely they would have a chance to bind somewhere else in the genome other than 
the targeted sequence of the exon. Graphical view of designed primer sets provides 
the proper coverage of the specific area of the research interest within the target 
sequence of the gene for amplification.

Ninth step Primer-BLAST usually generates sets of primers and arranges them in 
a way that the first suggested set primer is usually the one with the highest potential 
to successfully amplify the target sequence. According to the displayed primer 
reports, each and every generated set should include access details of actual nucleo-
tide sequence, for both forward and reverse primers, potential product size of the 
PCR target, direction of the template strand, melting temperature and the number of 
base pairs that would potentially self-complement to each other. Such report should 
help in selecting the ideal primer for PCR amplification (Fig. 16.5).
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Final step For clarification of the quality of the selected primers, it is recom-
mended to perform a simple primer evaluation test via PCR Primer Stats which 
accepts a list of PCR primer sequences and returns a report describing the properties 
of each primer, including melting temperature, percent GC content, and PCR 
 suitability. Use PCR Primer Stats to evaluate potential PCR primers. The raw 
sequence or one or more FASTA sequences should be pasted into the text area 
below. The input limit is 5,000,000 characters. The maximum accepted primer 
length is 50 bases (Fig. 16.6). 

PCR Primer Stats results
Global settings:

 – The primers do not have a 5'-phosphate group.
 – Combined concentration of K+ and Na+ in the reaction = 50 millimolar.

Fig. 16.5 PCR primer designing steps 9 to 10
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 – Mg+2 concentration in the reaction = 1.5 millimolar.
 – Primer concentration in the reaction = 200 nanomolar.

------------------------------------------------------------
General properties:
-------------------
Primer name: fwd
Primer sequence: GGCACCCAGTCTGAGAACAG
Sequence length: 20
Base counts: G=6; A=6; T=2; C=6; Other=0;
GC content (%): 60.00
Molecular weight (Daltons): 6136.04
nmol/A260: 5.07
Micrograms/A260: 31.08
Basic Tm (degrees C): 56
Salt adjusted Tm (degrees C): 51
Nearest neighbor Tm (degrees C): 64.0365.31
PCR suitability tests (pass/warning):
------------------------------------
Single base runs: Pass
Dinucleotide base runs: Pass
Length: Pass
Percent GC: Pass
Tm (nearest neighbor): Warning; Tm is greater than 58
GC clamp: Pass
Self-annealing: Pass
Hairpin formation: Pass
------------------------------------------------------------
General properties:
-------------------
Primer name: rev
Primer sequence: ACTCTGCTGAAGGCATCTCG

Fig. 16.6 A home page of Primer Stats – a primer validation tool
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Sequence length: 20
Base counts: G=5; A=4; T=5; C=6; Other=0;
GC content (%): 55.00
Molecular weight (Daltons): 6093.01
nmol/A260: 5.41
Micrograms/A260: 32.95
Basic Tm (degrees C): 54
Salt adjusted Tm (degrees C): 49
Nearest neighbor Tm (degrees C): 64.49
PCR suitability tests (pass/warning):
------------------------------------
Single base runs: Pass
Dinucleotide base runs: Pass
Length: Pass
Percent GC: Pass
Tm (nearest neighbor): Warning; Tm is greater than 58
GC clamp: Pass
Self-annealing: Pass
Hairpin formation: Pass
------------------------------------------------------------

16.5  Conclusion

In the current chapter, we demonstrated a pre-laboratory, computational PCR primer 
designing and evaluation method which could effectively decrease the chances of 
synthesizing and optimizing the false PCR primer sequences. This chapter would 
enable researchers to self-design highly sensitive and specific primers of their 
choice, using accessible and easy-to-use web resources. The online web server 
described in this chapter can aid in the rapid search of primer sequences and deter-
mine their orientation, location, melting point, secondary structure, and binding 
potential. The “PCR Primer Stats” program described in this chapter helps in the 
selection of best primer sets from the predicted ones, by validating them against the 
core properties of an ideal primer sequence. Moreover, this chapter also underlines 
the fact that in silico PCR is not just suitable for traditional PCR alone but also to a 
variety of other PCR methods like Fast PCR, inverse PCR and multiplex PCR, etc.
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17.1  Introduction

A system can be defined as a complex structure in which different components have 
a specific role, and when they work together, they accomplish tasks in much effi-
cient manner compared to each component separately (Kitano 2002). The system is 
a collection of elements or components that are organized for a common purpose. 
The biological system analysis provides us tools and techniques that help in 
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organizing the diverse piece of information and data gathered from traditional 
biological experiments. Development, integration, and experimental testing of 
hypothesis help us to analyze these systems, as depicted in Fig. 17.1.

Modeling means converting our hypothesis or assumptions into computational 
programs which further can be used for prediction. Some suitable assumptions are 
essential for model construction which includes modeling of the system into math-
ematical form. The mathematical model includes all kind of variables, real num-
bers, integers, Boolean flags, matrices, and other data structure. Each interaction 
represents a state in the model, and the final step involves converting the mathemati-
cal model into a computer program which is done by suitable genetic algorithms 
and other differential equation analysis-based algorithm. Once the computational 
model is built, it requires testing and verification in terms of validation. Models are 

Fig. 17.1 System level understanding of bio-models
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helpful as they help us to test the different hypothesis, refine and interpret experiment, 
and integrate knowledge, leading to new approaches by investigating  coupling and 
feedback. The model helps us to unlock biological systems as they offer different 
perspectives compared to the perspective provided by experiments and theory. 
Though models cannot replace lab experiments and cannot prove mechanism, still 
they serve as a standard feature for scientific investigations.

The illustrative models are precise representation of real situations. Here, we spe-
cifically focus on the controlling element from the real world which can be used as a 
deterministic factor to control our modeled system. Mathematics plays a dominant 
role in defining system using variables which precisely define real-world scenario. 
Using mathematical equations we can simply find the solution of various common 
problems. There are various network level studies exist in literature to perform mod-
eling for individual nodes or high throughput data (Bansal and Ramana 2015; 
Bansal and Srivastava 2018; Davis et al. 2017; Giraud et al. 2017; Griffen et al. 2017; 
Jindal and Bansal 2016; Jo et  al. 2017; Kim et  al. 2017; Nordholt et  al. 2017; 
Romero & López 2017; Vreven et al. 2017; Xie et al. 2017).

Once the model has been generated, it should be optimized. Optimization means 
to find the best solution that helps in better decision making. The key elements in 
optimization problems are decision variables and objective function (Zheng et al. 
2017). Decision variables are the variables that can be varied during the search of 
the best solution. An objective function helps us to quantify the quality of a solution, 
and constraints are the conditions that should be fulfilled in order to achieve the 
desired results. Different optimization techniques such as linear programming, 
nonlinear programming, parameter estimation, dynamic optimization, etc. are used 
for different problems.

Modeling is of no use until it is optimized as per the real situation. Thus, it is a key 
process for any kind of real model establishment. Optimization mainly controlled 
the principles of machine learning. We are considering one dataset for analysis and 
splitting it into two datasets, commonly known as training and test dataset. Various 
modelers use machine learning-based approaches in their algorithms for better effi-
ciency. Henceforth, we can say that model is typically dependent on optimization 
using set of variables or parameters which can be used to regulate or control the 
models as per the need of optimizer. Mathematical modeling is compiled with vari-
ous machine learning approaches in applicable manner which came into market in 
the form of various development tools and software.

With the increase of computer power and advanced mathematical techniques, 
mathematics is now playing the prominent role of integrating information and gen-
erating predictions, through the generation of the computationally inspired hypoth-
esis. Therefore, mathematical models can be used to understand the complex 
biological problems to unbind various diseases and drug effects to benefit the society 
in utmost sophisticated manner. Mathematical model allows a systematic approach 
for investigating system perturbations and is not limited to experimental constraints 
(Fan et al. 2017). These models are able to determine the systematic behavior of any 
real-world disease scenario.
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17.2  Development of Concept Map Models

Biological experiments deal with understanding of hidden processes in the layers of 
various unannotated datasets. The major goal of such analysis is to provide new 
insight about regulation mechanisms so that the system can be controlled in an effi-
cient manner. A variety of homogeneous and heterogeneous data are generated 
through various big data approaches using high-throughput methods. Generation of 
data is not sufficient to perform analysis to reveal the function of the system. There 
is a great need of concept map modeling to understand the systematic way to deal 
with such big data (Kumar et al. 2017).

Concept map modeling focuses on understanding and developing concept for 
development of methods for mathematical analysis. This approach is time- 
consuming as it involves the development of a model for the process and response 
for each level. Therefore it is important to derive such models that allow the incor-
poration of simple as well as complex methods for complete as well as incomplete 
datasets at defined instance (Sun et al. 2017). The main objective of this approach is 
to get acquainted with the quantitative formalization of the biological phenomenon 
by developing mathematical model for the hypothesis.

The initial step of this approach consists of converting or transforming a stable 
or static map to dynamic biological map. The next step consists of interpretation of 
local dynamic response under a set of conditions. By following these two steps, one 
can determine a parameterized model which is further analyzed and refined. A flow 
diagram of this approach is shown in Fig. 17.2.

Fig. 17.2 Molecular classification of system to modeling and optimization

A. Bansal et al.



377

Fig. 17.3 Flow diagram of the proposed approach to formalizing biological concept maps

One needs to examine how the components and process in a concept map relate 
to each other and contribute to the overall functioning. Conversion of the map into 
mathematically testable structures is an essential part of maps as such system cannot 
provide quantitative analysis themselves. Considering a modeling method, regulatory 
interactions can be inferred using mathematical variables or symbolic representations 
(Fig. 17.3).

The static maps can be converted into Boolean or semiquantitative dynamics 
(SOD) map if a biologist has some prior knowledge about the information contained in 
the static map such as the type of reaction or time required to convert gene expression 
(Kumar and Singh 2017; Teku and Vihinen 2017). The Boolean case determines the 
close relationship of having direct control on the components within the global 
system. For instance, gene X is essential for process Y to occur. It helps us to deter-
mine the accurate function which is applied in inverse methods.

In the real case, the concept of the model represents control about dynamics of 
each node available rather than the detailed time series. An initial model can be 
constructed with the help of this minimum information. Once the model is substi-
tuted by actual time series, a simple function can be determined that captures the 
dynamics at each node (Sehgal et al. 2015). The overall mathematical formulation 
and understanding to develop models are not always a critical task as generalized 
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models can be used for depictions of user-specific data. This data can be further 
customized in the forms of graphs or curves. For instance, dynamicity of the system 
can be represented in the form of various distributional curves or sigmoid curves. 
Once we have constructed these model-derived curves, we can switch on or off the 
functions and change the curves as per the need in the presence or absence of defined 
variables or parameters. Condition-based approximation and differential analysis 
on the basis of conditions can be applied on these generated models.

17.3  Network of Networks

A network helps in understanding and combining scattered data at various dimen-
sions. One of the key features of systems biology is focusing on “network of net-
works.” In the human body, n number of networks is integrated in such a fashion so 
that efficient communication can happen at molecular and cellular levels. Generating 
understandable biosystems may help us to get insights about biological functions 
and variations and trace out changes at cellular to phenotypic levels. Figure 17.4 
represents the structure of “network of networks” which gives an idea about various 
system biology approaches which differs from traditional biological approaches. 

Fig. 17.4 Systems Dissection in terms of networks of networks
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17.4  System Dissection into Components

Biological systems can be implemented in various ways; precisely it can be dissected 
using four components.

 1. High-throughput methods for data generation which includes identifying 
unknown information from the depth of biological aura.

 2. Developing concept, logic, and computational methods to combine various 
biological datasets to infer meaningful information.

 3. Hypothesis generation and testing on newly generated data and comparison of 
the same existing data in various online portals and literature.

 4. Understanding global scenario as big data and solving the phenotypic effects 
related to problems in differential data analysis for new information discovery.

17.5  Types of Modeling

Mathematical modeling is composed of various standard parameters, conceptual 
framing of tools, and interpretation of any kind of real system in mathematical form 
to decipher the control mechanics of the system. Mathematical representation of 
biological systems not only constructs the models but also optimizes and predicts in 
much efficient way compared to various traditional approaches. Thus, mathematical 
models can be implemented in terms of stochastic process, continuous process, or 
any other black box representation which doesn’t have well-known information of 
composition.

For all the cases, the modeling process consists of the following same steps. 
First, using physical laws from first principles, a symbolic model is constructed 
which serves as an extension to the already known existing model (Athanasiou et al. 
2017). This model consists of variables and parameters. The analysis requires com-
prehension of all parameter values obtained from biological knowledge. Variables 
in mathematical modeling can represent anything, whether it is a plant, animal, 
metabolite, pathway, or gene expression. Approximation and estimation of any 
parameter in biological terms is quite difficult as biological phenomenon doesn’t 
reveal complete information in one go as other modeled systems do. The analysis of 
the model is done with the techniques and tricks of mathematics and computer 
 science once the parameters are estimated. Due to the complexity of biological 
 systems, optimization and analysis of differential conditions and large datasets are 
performed using computational approaches. Interpretation in terms of graphs and 
matrix provides an edge to scientific community to accurately depict the behavior of 
the aligned system.

The identification of unknown parameters in terms of biological entities is the 
genuine deterrent in the progress of biomathematical modeling. A non-specific 
approach called biochemical systems theory is used for biological systems modeling 
and analysis which is used for the improvements, developments, and applications of 
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thousands of research papers. BST was initially used to study the control systems 
and biochemical pathways.

The fundamental precepts of BST are very basic and transparent. Every variable 
that progresses after some time is given a name X and is represented in the form of 
the different orders of differential equation and depicts the variation in such a way 
so that it can affect other variables or parameters in positive or negative regulatory 
ways. BST also addresses the problem where the modeler has some broad data 
about the procedures but does not know their mathematical representation to develop 
a structure to solve the complexity of biological systems. Sometimes it is very 
difficult for a developer to develop a system which doesn’t contain absolute values, 
or sometimes a developer is not having an idea of unknown things in the systems, 
but logically if we speak about linear regression, we are not sure about what kind of 
data points are there which need to be included or excluded at initial point. Both 
approaches are somehow similar while dealing with unknown information and posi-
tively providing an edge to mathematical modeling to structure the unstructured 
data. As biological networks don’t follow the Poisson distribution and  converge 
toward scale-free networks which comprises the properties of power law. So, it will 
not be wrong to say that such approaches can result in successful analysis toward 
validation of real dataset.

17.5.1  Forward Modeling

Identification of a parameter in a system is based on local information which subse-
quently deals with small component integration and formation of complete net-
work. For instance, for metabolic pathway construction, there is a need to understand 
the enzymes involved in pathway, transporters involved, co-factors playing the role 
in regulation, and ultimately metabolite formation through secondary metabolisms. 
All these terms need to be integrated to form mathematical equations and depict the 
understanding of biological phenomenon. Biological modeling is generally dealt 
with Michaelis-Menten or power law function. Dynamicity of the system is con-
trolled by various rate law and parameter approximations like Km and Vmax, and 
forward rate of reactions can be controlled on the basis of concentration assigned to 
each entity defined in the model (Apostolopoulos et al. 2017). In such modeling 
methods, there is a need to study the direct rate law to control the local parameters 
and test various hypotheses on the basis of developed models.

The main utilization of this method is the use of kinetic equations, using 
enzyme concentration for tracing the rate of reaction. Variation in the rate of reac-
tion subsequently leads to variation at phenotypic levels. Construction of such 
models and their refinements always has been a crucial task for scientists in bio-
logical community.
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17.5.2  Inverse Modeling

Variables are observed from high end to low end which means reduction approach. 
The most important advantage of this technique is that data is originated from the 
same organism, acquired in a similar trial condition, and represented in all the pro-
cedures within the organism that could affect the factors of the framework (Kallhovd 
et  al. 2017). Computational time complexity is a major issue with such kind of 
analysis. Moreover, various biological entities are ignored in case of modeling. 
The inverse modeling also use time-dependent analysis where pathways information 
is not absolute.

17.5.3  Partial Modeling

A specific issue with any model building approaches emerges due to the presence of 
the “omnipresent” metabolites like energy molecules (ATP) which cannot be mod-
eled as they are additionally required in different reactions. As a result, a mathemat-
ical buffer is constructed that absorbs the excess material, thus adjusting the dynamic 
changes in concentration at an already determined rate (Yalçın et al. 2017). Better- 
characterized statements are defined as differential conditions in BST, and their 
progression includes energy molecules as factors.

17.6  Inference from Qualitative Data to Computational 
Simulation

Biological system usually deals with enormous methods and tools whether they are 
qualitative or quantitative. Sometimes, there are exact implications of a system that 
are missing, and semiquantitative methods are prioritized over other measures of 
data segmentation or integration for network model construction. For instance, 
graphical methods represent directional flow of the information by connecting com-
ponents of a system in a systematic fashion. Moreover, network construction and 
hypothesis testing on the basis of available information and predicting the informa-
tion of missing links in the networks provide more insights about qualitative mea-
surement from raw unstructured data. Various probabilistic measures like Markov 
chains which are used to represent Hidden Markov models and Bayesian model- 
based networks deal with graphical presentation of unknown entities in a network 
through random measure.

Sometimes, these graphical methods do not represent the dynamicity of the 
 network and do not express much detailed information as per real-time scenario; 
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therefore mechanistic models come to existence where data can be analyzed in an 
automated manner.

Computer-based models and simulations provide an easy tool to understand 
 biological systems in terms of complex nonlinear dynamics. The first is that “instinc-
tive thinking about MAP kinase pathways led to the long-held view that the 
obligatory cascade of three sequential kinases serves to provide signal intensifica-
tion. In contrast, computational studies have suggested that the purpose of such a 
network is to achieve extreme positive cooperativity so that the pathway behaves in 
a switch-like, rather than a graded, fashion.”

Simulations present an understanding of biological phenomenon over differen-
tial time. Using differential equations on the same biological dataset can reveal 
hidden properties of the systems. But it will be unfair to expect accurate prediction 
through computational methods as these methods are developed to get insight about 
candidate entity selection. More data leads to more simulation time and subse-
quently increases the rate of precise selection of prediction attribute. Optimization 
can be performed on the basis of simulation measures of selected parameter. 
Simulation results in certain biological behavior analysis especially can be used in 
case of complex disease like cancer, diabetes, and neurodegenerative diseases. 
Simulations are modern and nontraditional techniques. In earlier days, people used 
conferences, abstract, and poster presentations to grab the idea of one’s understand-
ing. With the advancement in the internet world, these techniques can be integrated 
to form network to get holistic view of understanding of different people across the 
world (Huang et al. 2017). With the advancement in computational resources, the 
time and space complexity has not been an issue in the present world. So, mathe-
matical simulations remain as the best alternative to reduce the time, effort, and 
resources of any wet lab experiments.

17.7  Protein Class Identification

The helix-turn-helix structural motif has an important and crucial role in various 
cellular pathways that are involved in transcription, DNA recombination and repair, 
and DNA replication. At present, methods that are used for motif identification are 
dependent on the amino acid sequence. The major drawback of these methods is 
that motif members belong to different sequence families that do not share common 
ancestry or homology, and hence these methods are incapable to identify all motif 
members (Qing and Gerson 2017).

So to overcome this drawback, a new method based on three-dimensional struc-
ture was created that involved the following steps:

 1. Selecting a conserved component of the motif.
 2. Computing structural features relative to that component.
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 3. Generating categorization models by comparing the relevant measurements of 
structures that contain motifs and those structures that do not contain motifs.

With the establishment of classification model, the entire Protein Data Bank of 
experimentally measured structures was searched, and new examples of motifs 
were identified that do not show any sequence homology with previously known 
examples. Two such examples are Esa1 histone acetyltransferase and flavone 
4-O-methyltransferase. This result shows the importance of classification-based 
method that is proven helpful for the two abovementioned examples. The sequence- 
based methods are used to recognize a functional class of protein which can be 
improved by using the classification model that is based on three-dimensional struc-
ture information.

17.8  Computational Structure and Function Prediction

With the help of X-ray, NMR, and computational method techniques, structural 
genomics is now showing great enhancement in producing the three-dimensional 
structures of proteins. The important and crucial step after this is to understand 
how protein structure and functions are related. Studying protein structure indi-
vidually impairs the overall understanding of the protein as various missing links 
will exist while studying a part of the protein. The availability of the expected 
surfeit protein structures has resulted in the development of computational meth-
ods that examines multiple protein structures at once and returns the important 
biophysical and  biochemical features. Apart from this, these methods can also 
recognize important features in new protein structures (Winter et  al. 2015) 
(Fig. 17.5).

FEATURE is an automated system developed by Wei and Altman. This system 
applies statistical parameters to study vital functional and structural sites in protein 
structures such as active sites, binding sites, disulfide bonding sites, and so forth. By 
collecting all known examples of a type of site and non-site, FEATURE computes 
the spatial distributions of defined biophysical and biochemical properties. It applies 
various statistical measures to calculate accurate, active, and binding sites. The use 
of parametric and nonparametric test provides this tool a high-level sensitivity and 
specificity.

SBML, Gepasi, and CellML are specialized systems for biological and biochem-
ical modeling (Webb and White 2005). Madonna is a general-purpose system for 
solving a variety of equations (differential equations, integral equations, and so on). 
This has been represented in Fig. 17.6.
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Fig. 17.5 Protein structure, docking and dynamics study

Fig. 17.6 Modeling system and screening key biomarkers
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17.9  Forest Dynamics

SORTIE is a stochastic and mechanistic model that has been developed to simulate 
the growth of northeastern forests. This model mimics the fate of individual tree and 
its offspring. The model is based on the species-specific information regarding the 
growth rates, fecundity, mortality, and seed dispersal distances as well as some 
information regarding local regimes. SORTIE generates dynamic map by following 
tens of thousands of trees. This dynamic map depicts the distribution of nine domi-
nant or subdominant species of trees that look like real forests. The model also 
predicts the realistic forest responses to certain minor and major disturbances like 
destruction of tress within small circle of forest boundary and improved tree 
mortality.

17.10  Cell Designer: A Computational Tool for Modeling

CellDesigner is a software developed by Systems Biology Institute using Systems 
Biology Markup Language and graphical notation. Different kinds of boxes were 
used to represent different kinds of biological entities. And different kinds of flux 
box reactions are present in the model to define kinetic equations. Interaction 
between one entity (i.e., node) to another is represented by edges. The graphical 
design of the software is supported by Jarnac, Plot, and Gibson, while associated 
databases are BioModels, PubMed, IHOP, KEGG, and SABIO. With the help of all 
these integrated modules, a user can model biochemical and gene regulatory net-
works. Using cell designer the user can create graphical notation for gene, RNA, 
and protein and also make a complex of protein. There are options to import and 
control the models developed by other people in systems biology field. The major 
parameter in this software is to perform simulation at molecular level using genes, 
proteins, or metabolite concentration at different time periods. Ordinary differential 
equations are used to create the simulation profiles. Simulation profiles can be ana-
lyzed and compared within a model, same organism model or other model. Another 
important feature of this modeling tool is to study the small pathway by considering 
a system as a whole which implies that the user need not to study complete informa-
tion at one instance. The user can split their pathway of interests into different mod-
ules and later integrate them to reduce the time complexity for the simulation. Apart 
from this, there are various plugins which can be integrated with this software.

Cytoscape is a similar tool for model development on the basis of  topological 
analysis. This tool lacks the use of simulation to study differential  conditions, but 
statistical analysis and beautiful graphical layouts for representing networks pro-
vide an edge for this tool over other modeling softwares.
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17.11  Conclusion

Major purpose of modeling and optimization in research is to systematically assem-
ble and simulate all the molecules and their interactions that are occurring inside the 
living cell. There is a need to understand how these molecular interactions take 
place and how to determine the function of this complex machinery that cannot be 
solved only by biotechnology lab experiments. The advancement in the modeling 
techniques indicates that cellular networks are governed by diverse universal prop-
erties and offer a new conceptual structure that could potentially renovate our view 
of biology and drug therapies.
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