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A B S T R A C T

Plants respond to biotic stress by inducing a variety of responses, which not only protect against the immediate
diseases but also provide immunity from future infections. One example is systemic acquired resistance (SAR),
which provides long-lasting and broad-spectrum protection at the whole plant level. The induction of SAR
prepares the plant for a more robust response to subsequent infections from related and unrelated pathogens.
SAR involves the rapid generation of signals at the primary site of infection, which are transported to the
systemic parts of the plant presumably via the phloem. SAR signal generation and perception requires an intact
cuticle, a waxy layer covering all aerial parts of the plant. A chemically diverse set of SAR inducers has already
been identified, including hormones (salicylic acid, methyl salicylate), primary/secondary metabolites (nitric
oxide, reactive oxygen species, glycerol-3-phosphate, azelaic acid, pipecolic acid, dihyroabetinal), fatty acid/
lipid derivatives (18 carbon unsaturated fatty acids, galactolipids), and proteins (DIR1-Defective in Induced
Resistance 1, AZI1-Azelaic acid Induced 1). Some of these are demonstrably mobile and the phloem loading
routes for three of these SAR inducers is known. Here we discuss the recent findings related to synthesis,
transport, and the relationship between these various SAR inducers.

1. Introduction

In plants, active defense against microbial pathogens involves the
induction of elaborate defense signaling pathways. Some of these can
provide protection at the site of infection (local), whereas others pro-
vide systemic resistance throughout the plant including in non-infected
(distal) tissue. Local resistance includes species level resistance to non-
host pathogens, basal resistance to virulent pathogens, or race-specific
resistance to avirulent (Avr) pathogen isolates [1,2]. Basal immunity, or
PAMP/MAMP (pathogen/microbe associated molecular patterns)-trig-
gered immunity (PTI) is induced when pattern recognition receptors
(PRRs) from the plant recognize pathogen-derived elicitors. Race-spe-
cific resistance, or effector-triggered immunity (ETI) is induced when
strain-specific Avr proteins from the pathogen associate directly/in-
directly with cognate plant resistant (R) proteins. PTI and ETI have
been extensively reviewed in many recent articles [3–6].

Besides local defense mechanisms, plants can also activate systemic
immune responses which typically confer broad-spectrum resistance at
the whole plant level. Systemic defense signaling mechanisms include
induced systemic resistance (ISR), which is triggered in response to root
colonization by beneficial microbes [7], and systemic acquired resistance

(SAR), which is activated in response to pathogen infection [8–12]. SAR is
unique and highly desirable due to its exciting potential applications in
sustainable and long-term crop protection. Induction of SAR involves the
generation of mobile signal(s) at the site of primary infection, which
translocate to distal tissue and prepare the plant against future infections.
This requires careful and balanced cross-talk between various phyto-
hormones, metabolites, and proteins [13,14]. SAR also has transgenera-
tional benefits, and can be transferred to the immediate next generation
of progeny via epigenetic changes that affect the patterns of DNA me-
thylation at the promoter of defense-related genes [15,16]. However, it is
important to note that the mechanisms via which DNA methylation reg-
ulates SAR within a single generation may differ from transgenerational
SAR [17]. Although SAR is associated with a downregulation of photo-
synthesis and growth-related processes, it has been reported to confer a
fitness advantage under conditions of high disease pressure [18,19].

Several studies have shown that the SAR mobile signal(s) are gen-
erated very rapidly; within 4–6 h of primary infection [20–23], al-
though the kinetics of signal generation might differ depending on the
experimental system used to conduct these analyses. The signal(s) then
translocate acropetally, suggesting that this likely occurs via the
phloem [24,25]. Phloem loading of the SAR signal(s) in turn can occur
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either via the apoplast (space outside the plasma membrane) or the
symplast (network of cytoplasm interconnected by specialized openings
called plasmodesmata, PD). Importantly, these mobile signals are
highly conserved because petiole exudate from pathogen-infected
plants of one species can induce SAR in unrelated plant species [Ka-
chroo et al., unpublished data; 22,23,26]. Several chemical inducers of
SAR have been identified and some of these have been shown to
translocate systemically. The SAR associated chemicals include, sal-
icylic acid (SA) and its methylated derivative MeSA, [27,28] azelaic
acid (AzA) [29], glycerol-3-phosphate (G3P) [22,30,31] pipecolic acid
(Pip) [32], dehydroabietinal (DA) [23], and the free radicals, nitric
oxide (NO) and reactive oxygen species (ROS) [33,12]. Of these, SA
regulates one branch, whereas AzA, G3P, NO, and ROS regulate the
other branch of SAR (Fig. 1). DA and Pip are likely to feed into the SA-
dependent branch of the SAR pathway because they can induce SA
accumulation [23,32]. However, a recent study suggests that Pip op-
erates in both SA-dependent and −independent manner [19]. Many of
the chemical SAR inducers require the non-specific lipid transfer-like
protein (LTP), DIR1 (defective in induced resistance 1) [34] and the
hybrid proline-rich protein, AZI1 (AzA induced 1) [29,35] for SAR
signaling. DIR1 and AZI1 contain the conserved hydrophobic C-term-
inal cysteine rich domain found in LTPs [36]. DIR1 and AZI1 can form
homo- and hetero-oligomers, and can also interact with the close AZI1
paralog, EARLI1 (Early Arabidopsis Aluminium Induced 1) [22,31,36].
Like dir1 and azi1, earli1 mutant plants are defective in SAR [29,34,35].

Successful induction of SAR also relies on “perception” of the mobile
signal(s) in the distal tissue. Although this aspect of SAR is not well
understood, some factors that are essential for signal perception have
been identified. These include, an intact plant cuticle (a hydrophobic
barrier comprised of wax and cutin monomers that surrounds all aerial
surfaces of the plant), the major plant galactolipid, digalactosyldia-
cylglycerol (DGDG), and two PD localizing proteins PDLP1 and PDLP5.
Notably, plants that are defective in these components can generate the
SAR signal but are unable to perceive it [11,37–39]. However, some
cuticular factors also contribute to SAR mobile signal generation [40].
Notably, at least one protein that regulates cuticle formation was de-
tected in the phloem exudate of SAR-induced plants [41].

2. Endogenous chemical inducers of SAR

2.1. Dihydroabetinal

DA is a 20 carbon (C20) diterpenoid, which requires SA and its
signaling component NPR1 (Non-Expressor of Pathogenesis Related 1)
for inducing SAR [23,42,43]. In fact, DA application induces the ac-
cumulation of SA [23]. Although DA levels do not change in response to
pathogen infection, it is thought to change to an “active” form by as-
sociating with proteinaceous component(s) that enable its SAR-indu-
cing activity. These proteinaceous component(s) may include DIR1 and
AZI1 because DA-induced SAR requires these proteins [23]. Thus, DIR1
and/or AZI1 might mediate the switch between inactive and active
forms of DA, or the translocation of DA to distal tissues. The elucidation
of the DA biosynthetic pathway and further clarification of its re-
lationship to the other known chemical inducers of SAR should help
provide better insights into the precise contribution of DA.

2.2. Pipecolic acid

The SAR inducer Pip, is a non-protein amino acid derivative of ly-
sine, which accumulates in local and distal tissue of pathogen infected
plants. Pip is possibly also transported systemically based on its sig-
nificant accumulation in the petiole exudates of infected tissue [32]. In
plants, L-Pip is synthesized from lysine via ALD1 (AGD2 like defense
response protein) encoded aminotransferase [44–48]. ALD1 converts
lysine to e-amino-a-keto caproic acid (Δ1-P2C), which in turn iso-
merizes to the in planta detectable enamine Δ2-piperideine-2 carboxylic
acid (P2C) [45,46,48]. Two recent studies showed that ALD1 converts
lysine to P2C, which is subsequently converted to Pip by ornathine
cyclodeaminase (encoded by SARD4) [47,48]. Intriguingly, although
both ald1 and sard4 plants were compromised in SAR [32,46,47], Pip
levels in the infected leaves of these plants differed substantially. In
contrast to ald1 plants, which contained basal levels of Pip in both in-
fected and distal leaves, the sard4 mutant accumulated Pip in infected
but not distal leaves [47]. However, another recent study showed that
the distal leaves of sard4 can accumulate low levels of Pip at later times
after infection and that sard4 plants are SAR competent [48]. This
suggests that a pathogen-inducible factor can generate Pip in the in-
fected leaves of the sard4 mutant and enzymes other than SARD4
contribute to the conversion of P2C to Pip. The chloroplastic localiza-
tion of ALD1 and SARD4 suggests that Pip is likely synthesized in the
plastids [35,48]. ALD1 expression is itself induced by Pip application,
as is the overexpression of another SAR component, FMO1 a flavin
monooxygenase. Like the sard4 mutant, fmo1 plants are also compro-
mised in Pip accumulation in the distal leaves but contain wild-type-
like Pip levels in infected leaves [49]. Like ald1, the fmo1 mutants are
also defective in SAR [34,49]. Both ALD1 and FMO1 are induced in
infected and systemic tissues of pathogen-infected plants, and their
induction is independent of SA accumulation. Notably, ALD1-derived
factors (such as Pip) appear to be key for SAR-associated transcriptional
reprograming in the systemic tissue because pathogen-responsive
transcriptional changes in the distal tissue are almost completely absent
in ald1 mutant plants [19].

2.3. Salicylic acid and MeSA

The phytohormone SA is well known for its role in mediating plant
defense against pathogens [50]. SA, a small phenolic compound, is
synthesized via the shikimic acid pathway, with chorismic acid serving
as an important precursor that can be converted to SA via two distinct
branches. Both branches contribute to SA biosynthesis and are required
for SAR [51–54]. In one branch, chorismic acid is converted to SA via
phenylalanine and cinnamic acid intermediates by the key enzyme
phenylalanine ammonia lyase (PAL). In the other branch, chorismic
acid is converted to SA via isochorismic acid by the enzyme

Fig. 1. Model summarizing metabolite and protein-mediated signaling during systemic
acquired resistance. Pathogen infection induces the accumulation of salicylic acid (SA)
and the free radicals nitric oxide (NO) and reactive oxygen species (ROS). This requires
the galactolipid digalactosyldiacylglycerol (DGDG). The ROS species operate in a feed-
back loop with NO and catalyze the oxidative cleavage at carbon 9 of 18 carbon un-
saturated fatty acids present on DGDG and monogalactosyldiacylglycerol (MGDG) to
generate azelaic acid (AzA). AzA induces the expression of glycerol-3-phosphate (G3P)
biosynthetic genes to generate G3P. G3P functions in a feedback loop with the lipid
transfer like proteins DIR1 (Defective in induced resistance 1) and AZI1 (AZA induced 1).
AZI1 interacts with the plasmodesmata (PD) localizing protein 1 (PDLP1). PDLP1 inter-
acts with PDLP5, which regulates PD gating and the symplastic transport (dotted blue
lines) of AzA and G3P. The PDLP proteins also regulate partitioning of AZI1 between the
chloroplast and cytoplasm. Unlike AzA and G3P, SA is primarily transported via the
apoplast (dotted red line). SA-mediated signaling (red arrows) function in parallel with
NO-ROS-AZA-G3P-mediated (blue arrows) signaling to induce SAR.
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isochorismate synthase (ICS1/SID2) [53,55]. Mutations in either ICS or
PAL are sufficient to compromise SAR [51–53], indicating that SA
synthesis is essential for SAR.

SA accumulates in pathogen infected tissue [20,56–58], and most
studies have shown that the levels of SA in the distal tissue are sig-
nificantly lower than in infected tissue [11]. This is consistent with the
notion that nearly 70% of the SA in distal tissue is that which is
transported from the infected tissue, and only a small percentage of SA
is transported from infected to distal tissue during SAR [37,59,60].
Nonetheless, the low levels of SA in the distal tissues appear to be
important for SAR. Recent work has shown that the intracellular
movement of SA occurs via the apoplastic compartment [37]. This is
surprising given that the molecular mass of SA (138.12 Da) is well
below the size exclusion limit of PD (800–1000 Da) [57–59]. Thus, it
appears that the acidic SA must transverse the plasma membrane to exit
the cell for phloem loading. Interestingly, both pathogen infection and
exogenous SA application reduce PD permeability and thereby the
movement of solutes via the PD [37,64]. SA reduces PD aperture by
inducing the expression of PD-Localizing Protein 5 (PDLP5), which in
turn induces callose deposition at the PD resulting in PD closure
[64,65]. This raises the possibility that pathogen-responsive SA accu-
mulation in infected cells could inhibit the intercellular movement of
SAR signals via the PD. This cross regulation of signaling molecules is a
hallmark of plant signal transduction pathways and likely promotes a
fine control of SAR induction particularly since many of the signaling
molecules are conserved metabolites essential for the normal growth
physiology of the plant.

Although SA itself is transported systemically, MeSA the biologically
inactive derivative of SA, may also function in delivering SA to distal
tissue. Like SA, pathogen infection induces the accumulation of MeSA
in both local and distal tissues. Due to its volatile nature, MeSA can
function as an airborne defense signal [66,67], although it also accu-
mulates in the phloem during SAR. MeSA is synthesized from SA by SA
methyltransferases (SAMT/BSMT), and SAMT is required for the
phloem accumulation of MeSA [67–70]. Upon translocation to the
distal tissue MeSA is converted back to SA via MeSA esterase activity of
the SA binding protein (SABP) 2. Mutations in either SAMT or SABP2
were shown to compromise SAR [71–73]. Furthermore, SAR is in-
hibited by the synthetic SA analog, tetraFA (2,2,2,20-tetra-fluor-
oacetophenone), which inhibits the esterase activity of SABP2 [74].
Grafting studies in tobacco have shown that SABP2 activity is essential
in the distal, but not in the infected tissue, for SAR to be induced
[70,75]. Thus, MeSA must be converted to SA in the distal tissue during
SAR. However, MeSA is required 48 and 72 h post primary infection
[22,23,74], which is much later than the time frame of translocation of
the mobile signal. This makes MeSA an unlikely candidate for the pri-
mary mobile signal in SAR. This is also true for SA, which accumulates
later than the time frame of mobile signal movement. Moreover, neither
accumulation, nor transport of SA alone, is sufficient to induce SAR
[37,51,52,76]. This reinforces the view that SA signaling functions in
parallel with the AzA/G3P-derived branch to regulate SAR. The re-
quirement for MeSA in SAR was questioned by another study that
showed normal SAR in mutant plants defective in BSMT1, which en-
codes a benzoic acid/SA methyl transferase [72]. The Chaturvedi et al.
[23] study also suggested variability in the SAR response of the bsmt1
mutant. Subsequently, Liu et al. [73] showed that prolonged exposure
to light after pathogen infection could compensate for the lack of
BSMT1 in the Arabidopsis SAR response, suggesting that environmental
factors might be invovled in the regulation of MeSA levels.

The importance of SA in SAR is reiterated by the fact that many SA
signaling components are also essential for SAR [77,78]. For example,
NPR1, the central regulator of SA signaling, is required for SAR
[42,79,80–82]. In the absence of SA, NPR1 resides in the cytoplasm as
an oligomer [83]. Upon SA accumulation, the oligomers dissociate, and
the NPR1 monomers are transported into the nucleus [83,84]. Here,
NPR1 interacts with TGA proteins, which belong to the basic leucine

zipper (bZIP) protein family of transcription factors and binds TGACG
motifs to activate defense-related transcription [85–91]. SA accumula-
tion also promotes the interaction between NPR1 and TGA proteins
[86,92].

2.4. Free radicals

NO is a well-known gaseous signaling molecule that regulates many
physiological processes in plants both directly and by S-nitrosylation
(post translational modification of cysteine residues to S-nitrocysteine)
of key proteins. In plant defense, S-nitrosylation of NPR1 and TGA
factors promotes their nuclear translocation and DNA binding activity,
respectively [93]. However, NO can also promote NPR1 oligomeriza-
tion and thereby its inactivation through thiol S-nitrosylation [84].
These contrasting effects of NO on NPR1 may be dependent on the
intracellular concentration of NO because NO-induced SAR is highly
concentration-dependent [33]. Thus, too low or too high levels of NO
can inhibit SAR. In plants, NO can be directly synthesized from nitrate
by the nitrate reductases, NIA1 and NIA2, which are functionally non-
redundant in SAR. In addition, the GTPase AtNOA1 (NO associated
protein 1) also contributes to NO levels via an unknown mechanism
[94–96], and is partially redundant with the NIA isoforms. Thus, noa1
nia1 or noa1 nia2 double mutant plants are fully compromised in pa-
thogen-responsive NO accumulation and the onset of SAR [33,95].
Mutations in NOX1 (NO overproducer) and GSNOR1 (S-Ni-
trosoglutathione Reductase), which result in increased endogenous le-
vels of NO also impair SAR [33]. In plants, S-nitrosoglutathione (GSNO)
serves as a mobile reservoir of NO [97]. GSNOR regulates the turnover
of GSNO by reducing GSNO to GSSG (oxidized glutathione) and NH3
[98]. In Arabidopsis, GSNO levels increase in response to wounding or
SA application. GSNO is also detected in the systemic tissue of wounded
plants suggesting a possible role for GSNO as a mobile signal during
wounding [97]. Pathogen-induced NO accumulation is also reduced in
plants defective for the respiratory burst oxidase homologs (RBOH),
RBOHD and RBOHF [33]. RBOH generate reactive oxygen species
(ROS), and RBOHD and RBOHF are functionally non-redundant in SAR-
related ROS generation and thereby the onset of SAR. Like NO, ROS-
mediated SAR is also concentration-dependent [33].

2.5. Azelaic acid

NO and ROS both contribute to the biosynthesis of the SAR inducer,
AzA. AzA is a C9 dicarboxylic acid which is generated by the hydrolysis
of C18 fatty acids (FAs) carrying a double bond at carbon 9. These
include, oleic acid (18:1) and its desaturated derivatives, linoleic acid
(18:2) and linolenic acid (18:3). Because these FAs are essential for
plant survival and they function redundantly in AzA biosynthesis, it is
difficult to generate plants lacking AzA; mutations abrogating the
synthesis of all three unsaturated FAs are lethal. Cleavage of the double
bond between carbon 9 and 10 of 18:1/18:2/18:3 results in the for-
mation of 9-oxononanoic acid (ONA, a monocarboxylic acid), which is
then oxidized to AzA [33,99,100]. Different ROS species function ad-
ditively in the hydrolysis of these C18 FAs specifically present on the
major plant lipids digalactosyldiacylglycerol (DGDG) and mono-
galatosyldiacylglycerol (MGDG). Thus, plants defective in DGDG (dgd1,
mutation in DGDG synthase) or MGDG (mgd1, MGDG synthase)
synthesis cannot generate sufficient AzA in response to pathogen in-
fection [101]. Interestingly, DGDG, but not MGDG, is also important for
pathogen-induced NO and SA accumulation in the chloroplasts. Thus,
DGDG is required for the biosynthesis/accumulation of both NO and
AzA. Importantly, petiole exudate from dgd1 plants can induce SAR in
wild-type plants, indicating the presence of a yet unknown SAR-indu-
cing signal, which functions upstream of SA and NO-ROS-AzA-G3P
branches, and requires the DGDG lipid for SAR induction. Furthermore,
the sugar composition of the DGDG lipid appears to be crucial for SAR
because an altered form of DGDG carrying one glucose and one
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galactose moiety instead of two galactose moieties is nonfunctional in
SAR [101].

AzA accumulates in the petiole exudates of pathogen-infected plants
[29], and at least some (< 7%) of it translocates to the distal tissues,
although AzA can also be transported in the absence of pathogen in-
fection [31,102]. Interestingly, the majority of AzA in the distal tissue is
present as a derivatized product, suggesting that AzA may be deriva-
tized before transport or rapidly converted to a derivative upon trans-
port [31]. Recent studies show that intracellular transport of free AzA
occurs symplastically through the PD [37]. AzA requires DIR1, AZI1,
and EARLI1 for SAR induction [29,35].

2.6. Glycerol-3-phosphate

AzA induces SAR by inducing G3P biosynthesis via the upregulation
of G3P biosynthetic genes [31]. G3P accumulates in petiole exudates as
well as in local and distal tissue, as early as 6 h post pathogen infection.
G3P is a three carbon, phosphorylated sugar derivative that is an ob-
ligatory component of glycolysis and glycerolipid biosynthesis in all
organisms. G3P is synthesized from glycerol by glycerokinase (GK)
[103], or reduction of dihydroxyacetone phosphate by glycerol-3-
phosphate dehydrogenase (G3Pdh). Arabidopsis encodes multiple
G3Pdh isoforms present in different subcellular locations [22,104–107].
Mutants defective in G3P synthesis are compromised in SAR, and this
defect can be restored by the exogenous application of G3P [22].
Exogenous G3P also induces SAR in wild type plants, but not in dir1 or
azi1 mutant plants indicating DIR1/AZI1 are required for G3P-induced
SAR. In fact, the dir1 and azi1 mutants do not accumulate G3P in re-
sponse to pathogen-infection. Conversely, the DIR1/AZI1 proteins are
unstable in G3P biosynthetic mutant backgrounds, and the systemic
movement of the DIR1 protein requires G3P [22]. Thus, G3P and DIR1/
AZI1 appear to function in a feedback regulatory loop. Unlike DA or
Pip, G3P-induced SAR is not associated with an increase in SA levels in
local or distal tissue [22,31,101]. However, G3P application might
promote the conversion of MeSA to SA in distal tissue because it induces
the expression of a SABP2-like gene and represses AtBSMT1[22]. It is
possible that this enables the plant to maintain threshold levels of SA in
distal tissue, and reiterates the critical role for basal rather than induced
levels of SA, in SAR. Indeed, G3P cannot induce SAR in sid2 (mutation
in the SA synthesizing isochorishmate synthase1, ICS1) plants [22],
which contain significantly lower levels of basal SA compared to wild-
type plants. Importantly, localized application of G3P induces tran-
scriptional changes in distal tissue indicating a role for G3P in systemic
transcriptional reprogramming [22].

Consistent with the systemic transcriptional reprogramming, G3P
translocates to distal tissue, primarily in the form of an unidentified
G3P derivative, and this requires the DIR1 protein [22]. Like AzA, in-
tercellular transport of G3P occurs preferentially through the PD [37].
The movement of G3P and AzA via PD, correlates with PD localization
and systemic movement of at least some portion of the cellular pool of
DIR1 [22,31,108]. Although transient expression assays suggest that
some DIR1 may also be targeted for secretion to the cell wall, only the
cytosolic fraction of DIR1 appears to be important for SAR [109].
Likewise, AZI1, which is also required for AzA/G3P-mediated SAR also
localizes to the PD, although a small amount of this protein is also
detected in the chloroplast [35,37,110]. Notably, AZI1 requires the PD
localizing PDLP1 and PDLP5 proteins for its stability and appropriate
subcellular localization; AZI1 protein levels are reduced and localizes
primarily to the chloroplast in pdlp1 or pdlp5 mutant plants [37]. The
reduced stability and altered subcellular localization of AZI1 may be
responsible for the SAR defect of pdlp1 and pdlp5 plants. Clearly, PD
aperture is tightly regulated during SAR because both increased (via
knockout mutation in PDLP5) and decreased PD (overexpression of
PDLP5) permeability inhibit SAR [37,65,108]. Notably, inducible ex-
pression of AZI1 only in local tissue of azi1mutant plants is sufficient to
restore SAR [35]. Although this does not rule out the possibility of the

locally induced AZI1 moving into distal leaves, it raises the possibility
that long-distance mobility of AZI1 or AZI1-derived signal may not be
relevant to SAR [35]. Certainly, transiently expressed AZI1 did not
exhibit systemic transport in the absence of pathogen infection based on
fluorescence/Western blotting assays [111].

Besides DIR1, EARLI1 and PDLP1/5, AZI1 also interacts with
Mitogen Activated Protein Kinase 3 (MPK3) and a mutation in MPK3
also impairs SAR [112]. In addition to plant defense signaling, AZI1
also plays a role in salt stress response [111–113] suggesting that AZI1,
and by extension LTPs in general, likely contribute to diverse cellular
processes. AZI1 is thought to undergo post translational modifications
such as phosphorylation and proline hydroxylation based on differences
in expected protein size and gel mobility [111]. It is possible that dif-
ferential post translational modifications of AZI1 in response to dif-
ferent physiological stimuli enable its function in multiple modes of
plant stress responses.

3. Conclusions

Parallel operation and transport of chemical signals NO-ROS-AZA-
G3P and SA during SAR is likely advantageous as it confers plasticity to
the plant cells that are simultaneously engaged in multiple physiolo-
gical processes. The availability of multiple points at which the NO- and
SA-derived pathways can be co-regulated could facilitate a tighter
control of SAR. Additionally, multiple SAR-inducing signals could
function additively to facilitate SAR in distal tissue where the signal
levels are significantly lower than in infected tissue. The different
transport route of SA as compared to AzA or G3P likely provides mul-
tiple avenues for controlling the transport of these defense chemicals
and thereby minimizes the chances of non-specific activation of defense
processes in systemic tissue. Despite several key advances, numerous
aspects of SAR need further clarification. This includes the importance
of transport versus de novo synthesis of free radicals in the distal leaves.
Is phloem transport relevant in the context of gaseous/volatile SAR
signals such as NO and MeSA? Does signaling via the NO-ROS-AzA-G3P
branch intercept with signaling via the SA branch? What check points
regulate the two parallel branches? What is the bioactive compound(s)
that G3P is derivatized to and how does it relate to the bioactive DA
complex? What role do DIR1 and AZI1 play in the SAR bioactivity of the
G3P derivative(s)? What is the biosynthetic pathway and the precise
contribution of DA in SAR? How do DA and Pip relate to the other
known SAR signaling molecules? How are the various SAR associated
proteins and metabolites partitioned subcellularly? How do SA and the
PDLPs regulate PD permeability and transport of metabolite-protein
complexes via PD?

What aspects of cuticle development are associated with SAR? How
do cuticular components regulate SAR signal perception in the distal
tissue? Are cuticle defective mutants defective in the generation of any of
the known SAR inducers and can these chemicals induce SAR in cuticle
defective plants? To what extent do changes in FA/lipid flux in the cu-
ticle defective mutants affect their ability to induce SAR? Sustainable
deployment of this unique mode of resistance for protecting field crops
will not only depend on clarifying these aspects but also the development
of tools that will enable the measurement of precise spatial and temporal
changes in the various SAR inducing metabolites and proteins.
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