ELEMENTOS DE GENETICA VEGETAL EN LA PROTECCION DE CULTIVOS

Bioinformática - Bases de Datos y Servidores

Dr. Elias Mongiardini IBBM - CCT La Plata - CONICET

El desarrollo de la Life Science Bioinformática Desarrollo de las Research técnicas omicas Smart → Big DATA DATA Manejo de datos Internet DATA **DataBase** Avance de la capacidad DATA **Analysis** Bioinformatics Store Integration de computacion Bio Theoretical statistics analysis

Bases de datos

Def.: Fuentes computalizadas donde la información esta guardada de manera estructurada lo que facilita su acceso

Clasificación de las bases de datos biológicas desde un punto de vista informatico

- Primarias: archivos que sirve como depósitos de los datos crudos (Genbank y Protein Data Bank)
- Secundarias: son bases que usan los datos de la bases de datos primarias para generar nuevos sub-set de datos (InterPro, Swiss-Prot o Ensembl)
- Compuestas o especializadas: combina varias bases de datos primarias de manera que se puedan hacer búsquedas simultaneas (NCBI)

Clasificación de las bases de datos biológicas en base al tipo de datos y funciones

- 1 De secuencias
- 2 De estructuras
- 3 Funcionales

Bases de datos de secuencias de nucleótidos

Tres bases mas importantes

<u>EMBL-Bank</u> -> mantenida por el EBI (European Bioinformatics Institute en Europa) <u>DDBJ</u> -> mantenida por el NIG (Natioinal Institute of Genettics en Japón) <u>GenBank</u> -> mantenida por el NCBI (Nation Center in Biotechnology en USA)

> Las tres bases permiten el envio de nuevas secuencias

tos de GenBank

Otras bases imp.

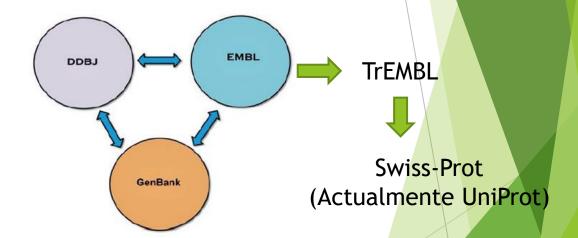
RefSeq: es una base incorpora a NCBI que toma los datos de GenBank y de bases de proteinas y proyectos genomas con el fin de hacer una anotación ordenada. Es una base curada

<u>Ensembl</u>: reúne varios genomas de vertebrados. Tiene un sistema propio de anotación de genomas aunque no hace el ensamblado del mismo. Provee datos de calidad curados

Bases de datos de secuencias de nucleótidos especializadas

<u>Name</u>	<u>Link</u>	<u>Description</u>
AFND	allelefrequencies.net	Allele Frequency Net Database
dbSNP	ncbi.nlm.nih.gov/snp	Database of single nucleotide polymorphisms
DEG	essentialgene.org	Database of essential genes
EGA	ebi.ac.uk/ega	European Genome-phenome Archive
Ensembl	ensembl.org	Ensembl genome browser
EUGene	eugenes.org	Genomic information for eukaryotic organisms
GeneCards	genecards.org	Integrated database of human genes
JASPAR	jaspar.genereg.net	Transcription factor binding profile database
JGA	trace.ddbj.nig.ac.jp/jga	Japanese Genotype-phenotype Archive
MITOMAP	mitomap.org	Human mitochondrial genome database
RefSeq	ncbi.nlm.nih.gov/refseq	NCBI Reference Sequence Database
PolymiRTS	compbio.uthsc.edu/miRSNP	Polymorphism in miRNAs and their target sites
1000 Genomes	1000genomes.org	A deep catalog of human genetic variation

Bases de datos de secuencias de proteínas


TrEMBL: incluye todas las secuencias de DDBJ/EMBL/GenBank traducidas. Es automática

(Swiss-Prot: toma de TrEMBL las anotaciones y las cura manualmente)

GenPept -> es derivado de la anotación de GenBank

Entrez Protein -> es el servicio de anotación de NCBI

UniProt -> mantenida por NIH (Combinación de Swiss-Prot, TrEMBL y PIR-PSD)

BLAST Align Retrieve/ID mapping Peptide search SPARQL

The mission of UniProt is to provide the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and the scientific community with a comprehensive, high-quality and freely accessible resource of protein sequence and the scientific community with a comprehensive of the scientifi

UniProtKB

UniProt Knowledgebase

Swiss-Prot (562,755)

Manually annotated and reviewed.

Records with information extracted from literature and curator-evaluated computational analysis.

TrEMBL (184,998,855)

Automatically annotated and not reviewed.

Records that await full manual annotation.

UniRef

The UniProt Reference Clusters (UniRef) provide clustered sets of sequences from the UniProt Knowledgebase (including isoforms) and selected UniParc records.

UniParc

UniParc is a comprehensive and non-redundant database that contains most of the publicly available protein sequences in the world.

Proteomes

A proteome is the set of proteins thought to be expressed by an organism. UniProt provides proteomes for species with completely sequenced genomes.

Supporting data

Literature citations

Cross-ref. databases

Taxonomy

Diseases

Subcellular locations

Keywords

Bases de datos de secuencias de proteínas especializadas

EKPD ekpd.biocuckoo.org Eukaryotic Kinase and Phosphatase Database

HPRD hprd.org Human Protein Reference Database

InterPro ebi.ac.uk/interpro Protein sequence analysis and classification

ModBase salilab.org/modbase Database of comparative protein structure models

PDB rcsb.org/pdb Protein Data Bank for 3D structures of biological macromolecules

PDBe ebi.ac.uk/pdbe Protein Data Bank in Europe

Pfam pfam.xfam.org Database of conserved protein families and domains

PIR pir.georgetown.edu Protein Information Resource SysPTM lifecenter.sgst.cn/SysPTM Posttranslational modifications

UniProt uniprot.org Universal protein resource

UUCD uucd.biocuckoo.org Ubiquitin and Ubiquitin-like Conjugation Database

TreeFam treefam.org Database of phylogenetic trees of animal species

CATH cath.biochem.ucl.ac.uk Protein structure classification

CPLM cplm.biocuckoo.org Compendium of Protein Lysine Modifications

DIP dip.doe-mbi.ucla.edu Database of Interacting Proteins

Bases de datos de estructuras 3D

En 1971, Brookhaven National Laboratory -> PDB

Diversas bases de datos de estructuras

Bases de datos primarias de estructuras

- RCSB PDB (https://www.rcsb.org/): Research Collaboratory for Structural Bioinformatics

 Protein Data Bank
- PDBe (http://www.ebi.ac.uk/pdbe/) del EBI
- PDBj (<u>https://pdbj.org/</u>) en Japón

Bases de datos de clasificación de proteinas

- CATH (http://www.cathdb.info/)
- SCOP (http://scop2.mrc-lmb.cam.ac.uk/)

Bases de Ácidos Nucléicos

- NDB (http://ndbserver.rutgers.edu/) -> ácidos nucleicos
- RNA FRABASE (http://rnafrabase.cs.put.poznan.pl/) -> frgamentos de RNA
- NPIDB (http://npidb.belozersky.msu.ru/) -> complejos ácidos nucleicos y proteinas

Bases de datos de proteínas de membrana

- MemProtMD (http://sbcb.bioch.ox.ac.uk/memprotmd/)

Bases de sitios activos, de unión de ligandos y metaloproteínas

- PeptiSite (http://peptisite.ucsd.edu/)
- ComSin (http://antares.protres.ru/comsin/)

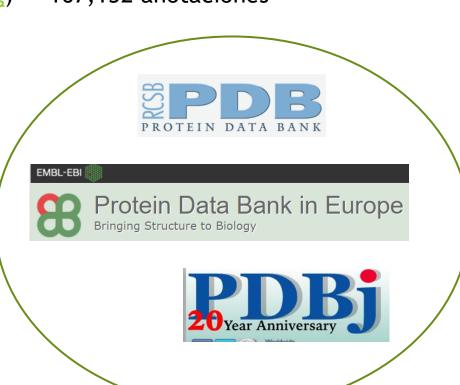
<u>Servidores para comparación de estructuras</u>

- DALI (http://ekhidna2.biocenter.helsinki.fi/dali/)
- VAST+ (https://structure.ncbi.nlm.nih.gov/Structure/VAST/vastsearch.html)

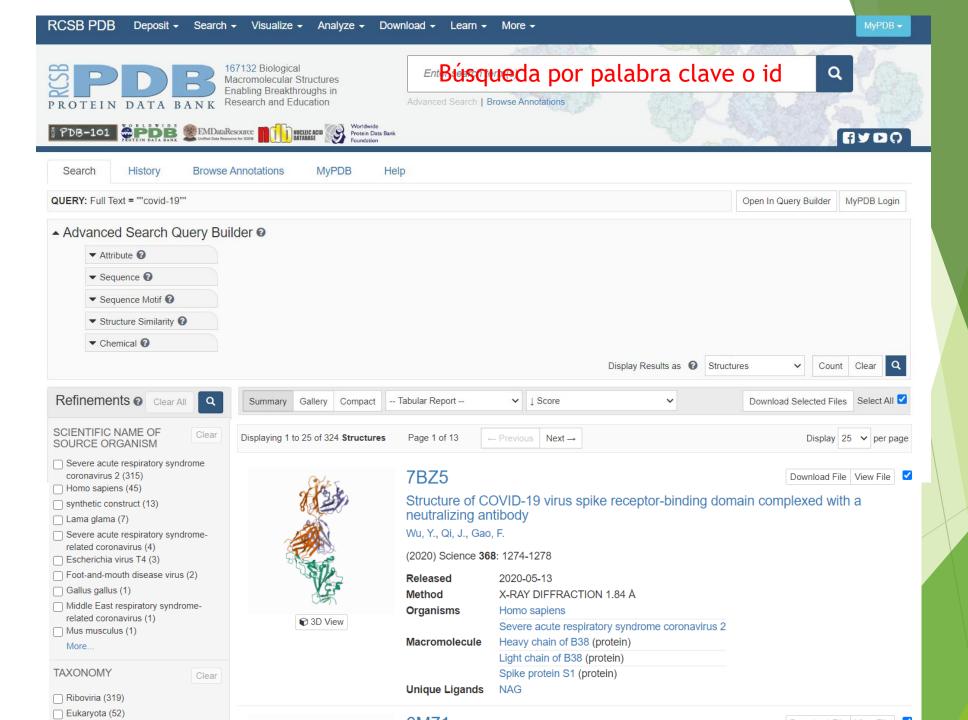
Otras Bases de datos

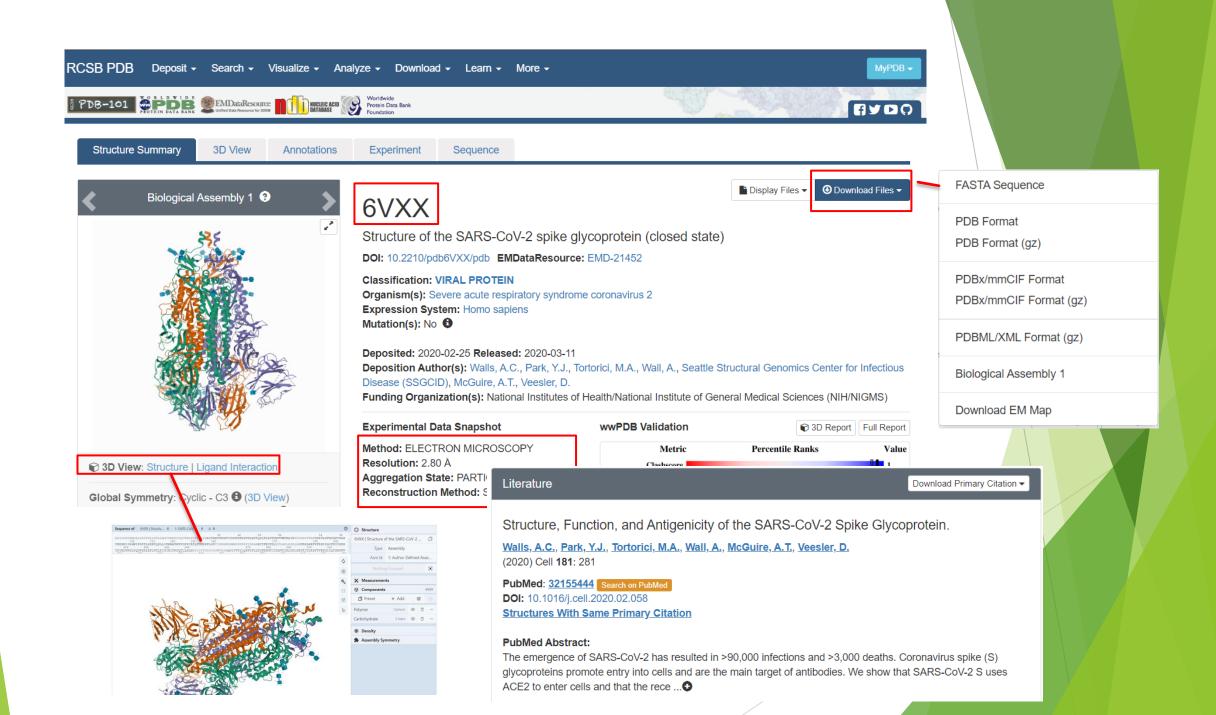
- PTM-SD (http://www.dsimb.inserm.fr/dsimb_tools/PTM-SD/) -> modificaciones post-traduccionales
- GFDB (http://www.glycanstructure.org/) -> restos glicosídicas y estructuras de carbohidratos
- ChEMBL (https://www.ebi.ac.uk/chembl/) -> moléculas pequeñas bioactivas

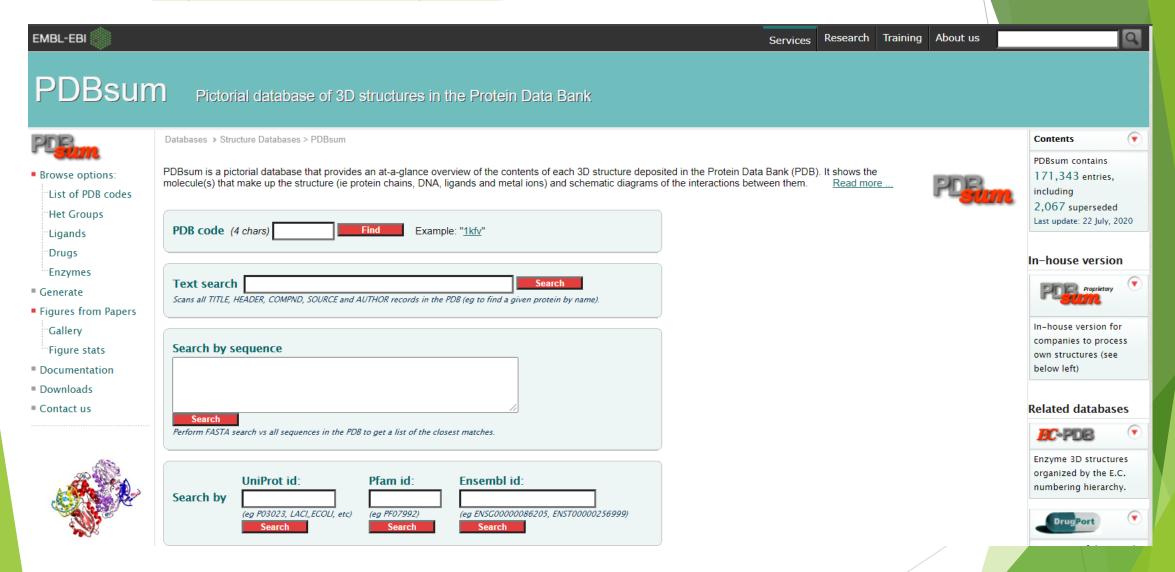
Bases de datos primarias de estructuras 3D


Datos de experimentos de: Difracción de rayos X

Resonancia Magnética Nuclear (NMR)


Cryo-EM


wwPDB (<u>www.wwpdb.org</u>) -> 167,132 anotaciones



Sitio de la PDB

PDBsum (https://www.ebi.ac.uk/pdbsum)

Funciona a modo de atlas que compila las anotaciones de todas las bases y facilita la búsqueda entre todas la bases

Bases de datos de clasificación de proteínas

CATH database (Class, Architecture, Topology, Homology)

clasifica los dominios en 4 niveles de jerarquia

- C level: de acuerdo a estructura secundaria
- A level: orientacion de estructura secundaria
- T level: relacion entre estructuras secuandarias
- H level combinacion de similitude de secuencia y estructura

Dentro de CATH se encuentra la **CATH/Gene3D database** que es complementaria Utiliza las secuencias depositadas en UniProt y la PDB para clasificar las proteinas en familias Hay 95 millones de dominio de porteinas clasificados en 6119 superfamilias

SCOP database

Base de datos enfocada en estructura y evolución de proteínas

Servidores para comparación de estructuras

Estos servidores tratan de encontrar proteinas con estructuras 3D similares sin basarse en la secuencia lineal de aa

Estos servidores

- ayudan en la clasificación de proteinas basa en el folding
- colaboran en el proceso de identificación de funcion basada en estructura
- aportan en los métodos de modelado por homologia

Los dos mas importantes son:

VAST+ -> de NCBI (no busca por comparación de secuencia sino por similitud 3D por lo tanto tiene utilidad en los casos de baja homologia).

DALI web server -> Helsinki Lab. Esta basado en clasificar las estrucuras de la PDB basado en la comparación de sus estructuras.

Ambos se pueden acceder a partir de códigos PDB y proveen información de estructuras similares a la que se esta buscando

Bases de datos funcionales

GO/GOA databases: gene ontology annotation -> creada para unificar y organizar los datos referidos a anotación de proteinas

PRIDE Archive -> depositorio de espectros de MS de identificación de proteinas

<u>Swiss 2d Prot</u> -> repositorio de experimentos de geles 2D

Network Databases -> bases de datos basadas en modelos de interacción de proteinas

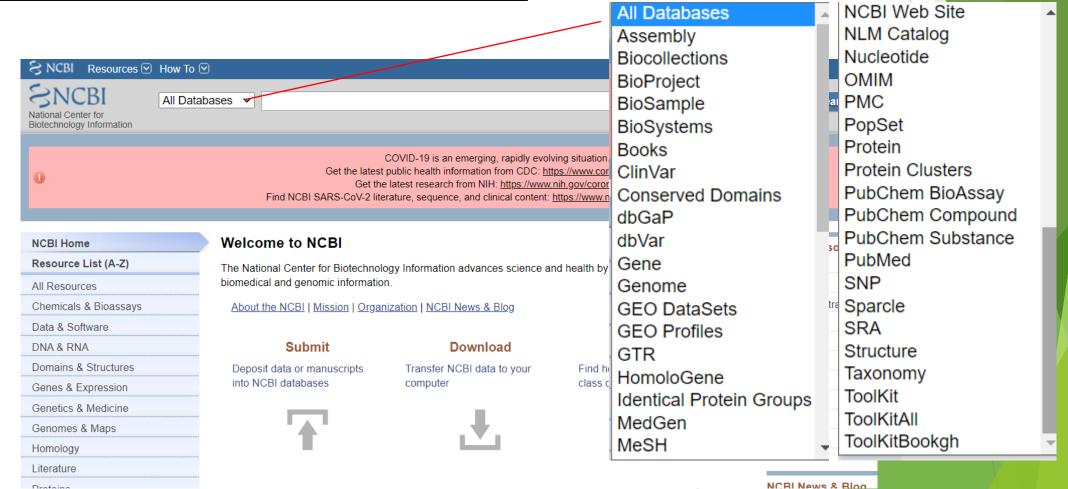
- IntAct -> reúne datos experientales de interacción de proteinas y facilita su búsqueda

Bases de datos de vías metabólica

- KEGG (Kyoto Encyclopedia of Genes and Genomes -> contiene vías metabólicas curadas manualmente

Bases de datos de drogas

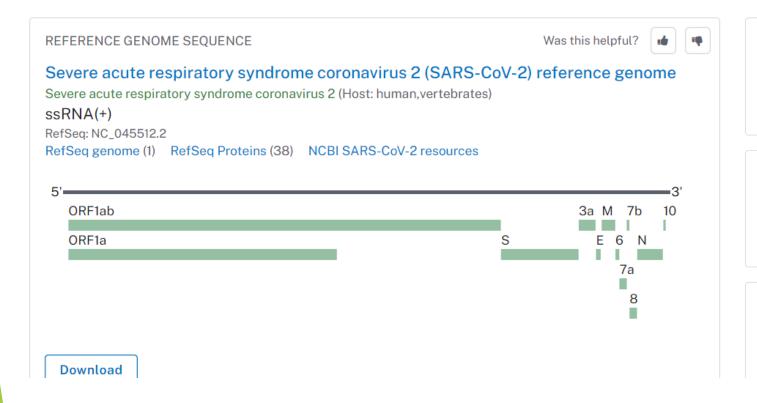
- DrugBank -> la ultima versión contiene 11,177 compuestos que incluyen moléculas pequeñas, péptidos y otros.


Bases de datos de organismos modelos

- Saccharomyces Genome Database (yeastgenome.org)
- ZFIN (zfin.org) -> Zebrafish
- TAIR (arabidopsis.org) -> Arabidopsis
- Rat Genome Database (rgd.mcw.edu) -> rata
- Mouse Genome Database (informatics.jax.org) -> ratón
- FlyBase (flybase.org) -> drosofila

Bases de datos de literatura

- -PubMed -> NCBI
- Google Scholar


Bases de datos complejas o combinadas -> NCBI

Una búsqueda en NCBI en todas las bases

Results found in 26 databases

BLAST

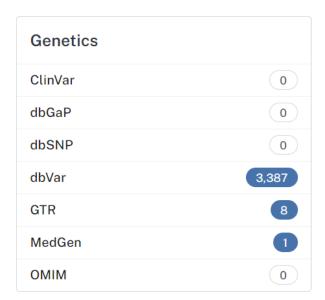
Use our new Betacoronavirus database for SARS-CoV-2 genome sequence analysis

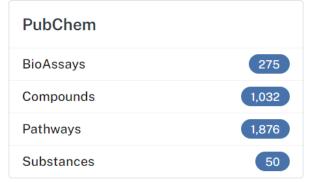
NCBI Virus

The most up-to-date set of SARS-CoV-2 nucleotide and protein sequences

LitCovid

A curated literature hub for the latest scientific information on COVID-19




Literature	
Bookshelf	123
MeSH	36
NLM Catalog	35
PubMed	36,505
PubMed Central	37,526

Genes	
Gene	55
GEO DataSets	130
GEO Profiles	0
HomoloGene	0
PopSet	66

Proteins	
Conserved Domains	17
Identical Protein Groups	14,935
Protein	137,271
Protein Clusters	0
Sparcle	0
Structure	300

Genomes	
Assembly	92
BioCollections	0
BioProject	158
BioSample	38,561
Genome	1
Nucleotide	13,459
SRA	36,350
Taxonomy	1

Items: 1 to 20 of 137271

<< First < Prev Page 1 of 686

Chain A, Spike protein S1

1. 229 aa protein

Accession: 7BZ5 A GI: 1841213709

PubMed Taxonomy

GenPept Identical Proteins FASTA Graphics

Chain A, main protease

2. 306 aa protein

Accession: 6LU7 A GI: 1806061810

<u>PubMed</u> <u>Taxonomy</u>

GenPept Identical Proteins FASTA Graphics

Chain B, SARS-Cov-2 NSP 8

3. 198 aa protein

Accession: 6M71 B GI: 1827515550

PubMed Taxonomy

GenPept Identical Proteins FASTA Graphics

Chain D, SARS-Cov-2 NSP 8

4. 198 aa protein

Accession: 6M71 D GI: 1827515549

<u>PubMed</u> <u>Taxonomy</u>

GenPept Identical Proteins FASTA Graphics

☐ Chain C. SARS_Cov_2 NSP 7

Chain A, Spike protein S1

PDB: 7BZ5_A

Identical Proteins FASTA Graphics

<u>Go to:</u> ✓

LOCUS 7BZ5 A 229 aa linear VRL 24-JUN-2020

DEFINITION Chain A, Spike protein S1.

ACCESSION 7BZ5_A VERSION 7BZ5_A

DBSOURCE pdb: molecule 7BZ5, chain 65, release Jun 24, 2020;

deposition: Apr 26, 2020;

class: VIRAL PROTEIN/IMMUNE SYSTEM;

source: Mmdb_id: <u>187670</u>, Pdb_id 1: 7BZ5;

Exp. method: X-ray Diffraction.

KEYWORDS .

SOURCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

ORGANISM Severe acute respiratory syndrome coronavirus 2

Viruses; Riboviria; Orthornavirae; Pisuviricota; Pisoniviricetes; Nidovirales; Cornidovirineae; Coronaviridae; Orthocoronavirinae;

Betacoronavirus; Sarbecovirus.

REFERENCE 1 (residues 1 to 229)

AUTHORS Wu,Y., Wang,F., Shen,C., Peng,W., Li,D., Zhao,C., Li,Z., Li,S.,

Bi,Y., Yang,Y., Gong,Y., Xiao,H., Fan,Z., Tan,S., Wu,G., Tan,W., Lu,X., Fan,C., Wang,Q., Liu,Y., Zhang,C., Qi,J., Gao,G.F., Gao,F.

and Liu,L.

TITLE A noncompeting pair of human neutralizing antibodies block COVID-19

virus binding to its receptor ACE2

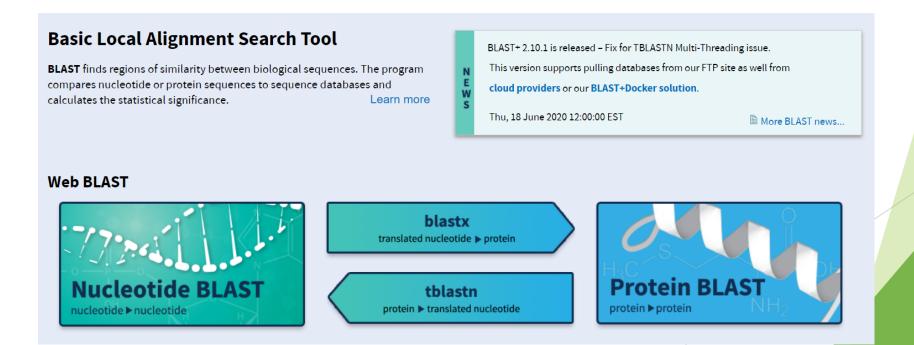
JOURNAL Science 368 (6496), 1274-1278 (2020)

PUBMED <u>32404477</u>

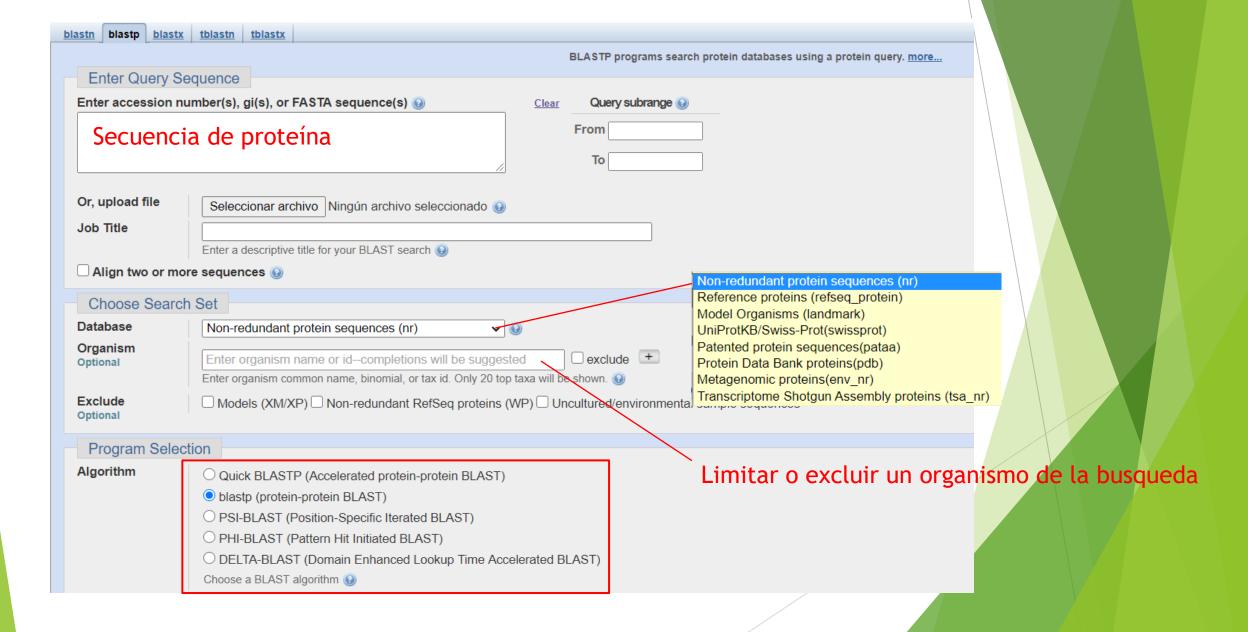
REFERENCE 2 (residues 1 to 229)

AUTHORS Wu,Y., Qi,J. and Gao,F.

Herramientas y métodos en el manejo de secuencias


Alineamiento de secuencias

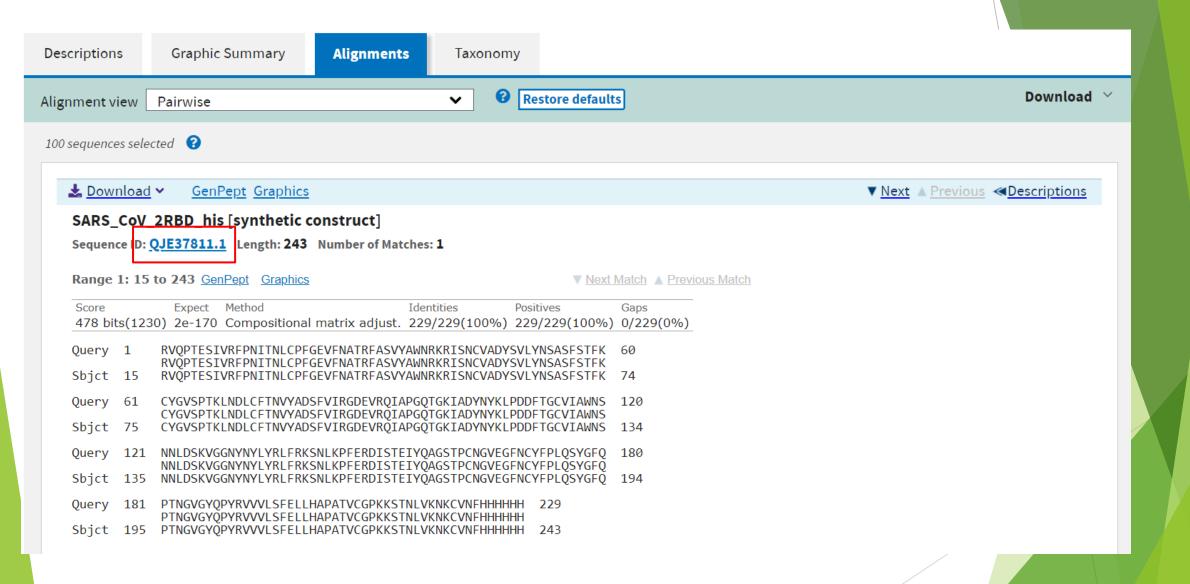
2 tipos: - Globales


- Locales

Blast: es uno de los algoritmos mas utilizados para hacer alineamientos y búsquedas de secuencias por similitud

Servidor de NCBI con el Blast tools




BlastP

Resultado del BlastP

	riptions	Graphic Summary	Alignments	Taxonomy								
Sequences producing significant alignments Download Manage Columns Show 100 100							.00 🗸					
select all 100 sequences selected					GenPept Gra	phics	<u>Dista</u>	nce tree	e of resu	lts <u>Multi</u>	ple alignment	
			Des	scription			Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
	SARS_CoV_	2RBD_his [synthetic construct]					478	478	100%	2e-170	100.00%	QJE37811.1
	Chain E, Spi	ike receptor binding domain [Se	vere acute respiratory s	yndrome coronavirus	2]		477	477	100%	4e-170	100.00%	6M0J_E
	Chain C, Spi	ike protein S1 [Severe acute res	spiratory syndrome coro	navirus 2]			472	472	100%	5e-168	99.13%	6W41_C
	Chain E, Spi	ike glycoprotein [Severe acute r	espiratory syndrome co	ronavirus 2]			466	466	100%	1e-165	91.24%	6XDG_E
	<u>Chain E, Spi</u>	ike protein S1 [Severe acute res	spiratory syndrome coro	navirus 2]			462	462	98%	1e-163	98.67%	<u>6XE1_E</u>
	Chain E, SA	RS-coV-2 Receptor Binding Doi	main [Severe acute resp	<u>piratory syndrome coro</u>	onavirus 2]		460	460	97%	1e-163	100.00%	<u>6M17_E</u>
	surface glyco	<u>oprotein, partial [Severe acute re</u>	espiratory syndrome co	ronavirus 2]			465	465	97%	2e-158	99.55%	QKK14051.1
	Chain E, SA	RS-CoV-2 receptor binding dom	nain [Severe acute respi	ratory syndrome coro	navirus 2]		444	444	100%	2e-157	94.76%	7BWJ_E
	surface glyco	<u>oprotein, partial [Severe acute r</u>	espiratory syndrome co	ronavirus 2]			469	469	97%	2e-155	99.55%	QJD23474.1
	surface glyco	<u>oprotein, partial [Severe acute r</u>	espiratory syndrome co	ronavirus 2]			469	469	97%	2e-155	99.55%	QJD25214.1
	surface glyco	<u>oprotein, partial [Severe acute r</u>	espiratory syndrome co	ronavirus 2]			463	463	96%	6e-155	99.55%	QKV38614.1
	Chain A, SAI	RS-CoV-2 Spike glycoprotein [S	Severe acute respiratory	syndrome coronaviru	s 2]		469	469	97%	2e-154	99.55%	7BYR_A
	surface glyco	<u>oprotein, partial [Severe acute r</u>	espiratory syndrome co	ronavirus 2]			469	469	97%	2e-154	99.55%	QLL35949.1
	surface glyco	oprotein, partial [Severe acute r	espiratory syndrome co	ronavirus 2]			469	469	97%	3e-154	99.55%	QMI96595.1
**	curfoso alvos	opratain partial (Cayara acuta r	oonirotoni cundromo oo	ropovinie 21			460	460	ი70⁄~	3n 151	00.55%	OMI00362.1

Alineamientos multiples

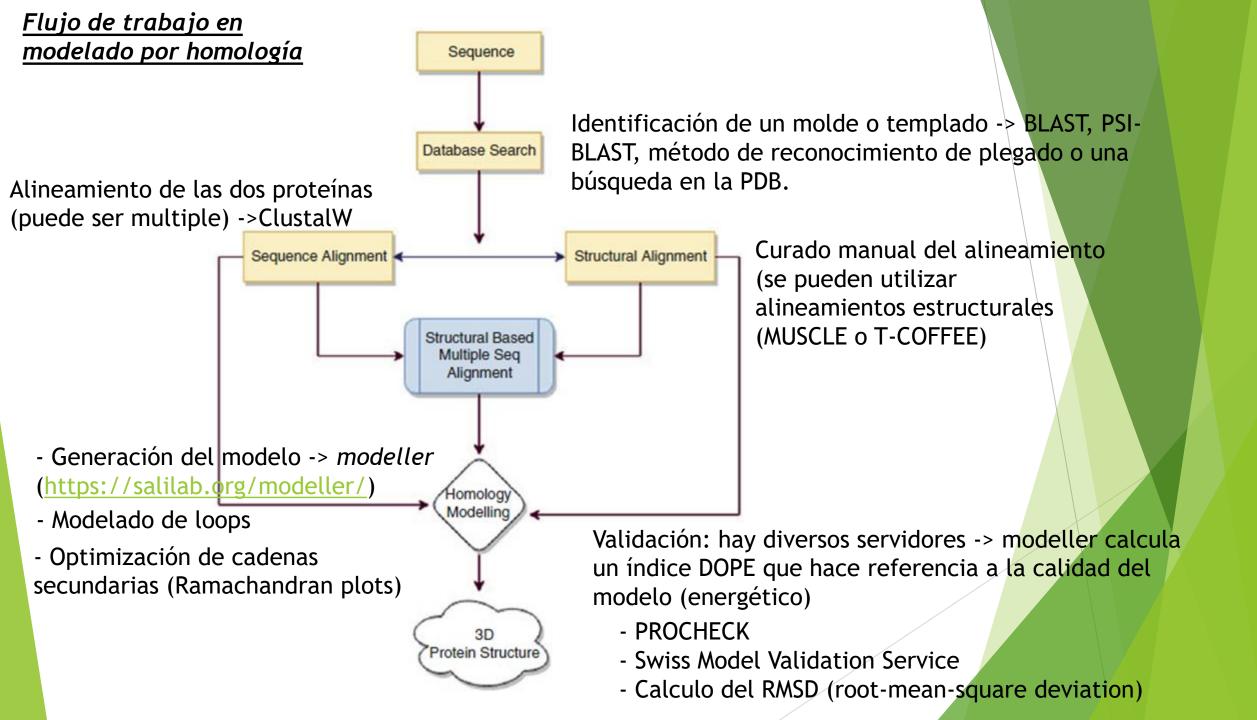
Métodos progresivo -> clustalW Método iterativo -> MultiAlin Alineamiento por Profile -> PSI-BLAST

Análisis filogenietico

ClustalW se puede ejecutar online en distintos servidores -> EBI tb. se puede ejecutar en el paquete MEGA (software free) PSI-BLAST -> NCBI

Servidores de bioinformatica estructural

Predicción de estructuras 3D


3 métodos:

- Modelado por homología requiere de un homologo resuelto en la PDB
- Por reconocimiento de plegado: requiere de la presencia de estructuras secundaria similares resueltas
- De novo (ab inicio): solo se utiliza la información de la estructura primaria

Modelado por homología

Supone que secuencias de aa similares se van a plegar de la misma manera

Como regla se utiliza que al menos debería haber entre un 30%-50% de identidad para utilizar este método

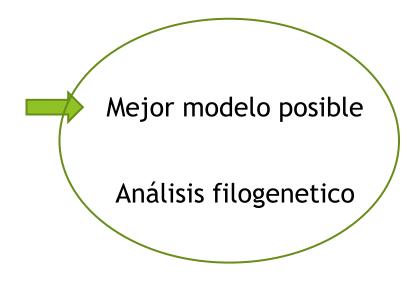
Modelado por reconocimiento de plegamiento

Se utiliza cuando el % de homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta dentro de los límites de aplicabilidad del homología esta del homología esta

Se basa en la búsqueda de plegamientos similares en la PDB a partir de métodos estadisticos

Hay varios servidores:

- I-TASSER
- Hhpred
- Phyre2


Ab initio

Solo se utiliza la secuencia de aa de la proteína como información Se basa en predecir la estructura nativa a partir de encontrar la conformación de energía mas favorable

Hay varios servidores:

- QUARK
- ROSETTA

En general es conveniente utilizar todos los 3 métodos y evaluar los resultados que se encuentran con cada uno de ellos

Predicción de función

The 27th annual Nucleic Acids Research database issue and molecular biology database collection

Daniel J. Rigden^{1,*} and Xosé M. Fernández²

¹Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK and ²Institut Curie, 25 rue d'Ulm, 75005 Paris, France

The NAR online
Molecular Biology Database Collection has been revised, updating 305 entries, adding 65 new resources and eliminating 125 discontinued URLs; so bringing the current total to 1637 databases

http://www.oxfordjournals.org/nar/database/c/.

